Онлайн помощник домашнего мастера

  • Электродвигатели

Мягкий запуск двигателя и его деликатное торможение способны в разы увеличить срок службы системы за счет защиты от перегрева, скачков и рывков процессов. Как раз для этого было разработано устройство плавного пуска или сокращенно УПП, которое стабилизирует пусковые характеристики и обеспечивает равномерную работу механизма.

С помощью УПП можно избежать множество проблем в функционировании электродвигателя, поэтому важно знать назначение и принцип действия устройства плавного пуска, основные параметры, нюансы подключения и эксплуатации.

Краткое содержимое статьи:

  • Чем помогает УПП
  • Когда УПП необходимо
  • Как выбрать софстартер
  • Как подключить и настроить
  • Фото устройства плавного пуска

Снижение момента при пуске

Как известно, момент на валу пропорционален квадрату напряжения питания электродвигателя. Именно пониженным механическим моментом на валу объясняется то, что он раскручивается плавно. Но всегда ли это является преимуществом?

Дело в том, что в некоторых технологических процессах время пуска должно быть минимальным. Например, это касается мельниц и дробилок, где запуск должен происходить рывком, особенно, когда невозможно начать работу на холостом ходу.

При применении устройств плавного пуска в насосных станциях также могут возникнуть неприятные моменты, прежде всего при запуске незаполненной гидросистемы, когда возможно крайне медленное и неполное ее заполнение. Это может привести к образованию воздушных карманов и заиливанию системы.

Однако даже в этих случаях применение УПП целесообразно, если провести правильную его настройку, создать правильную электрическую схему с нужными блокировками и защитами, проинструктировать технологический персонал.

Например, в случае с дробилкой можно получить все преимущества использования устройства плавного пуска, если предусмотреть в технологическом процессе полное опорожнение дробилки перед её выключением. Кроме того, нужно задать минимально допустимое время разгона, а начальное напряжение установить максимально возможным (до 50%). Пуск в обход УПП (через контактор) можно оставить, но использовать только как аварийный режим.

Обзор устройств плавного пуска –применение, принципы действия, разновидности, схемы включения

Проблема пускового тока

Одна из особенностей работы асинхронного двигателя, которую можно назвать недостатком – большой пусковой ток при старте, который может превышать номинальный в 8 и более раз. Это обусловлено принципом его работы – при подаче на него номинального напряжения он стремится сразу выйти на полную мощность. Данная особенность проявляется в большой мере при пуске через линейный контактор, это также называют прямым пуском двигателя.

В некоторых механизмах принципиально важно, чтобы пуск был плавный, без рывков и ударов. Это касается прежде всего технологического оборудования, у которого высокий момент инерции при запуске. Например, тяжелые маховики и конвейеры с продукцией, а также мощные насосы и вентиляторы.

Иными словами, большой пусковой ток и большой момент инерции механической нагрузки на валу двигателя – взаимосвязанные вещи, от который часто необходимо избавляться.

Кстати, в некоторых странах законодательно запрещено включать электродвигатели большой мощности прямой подачей напряжения, поскольку это создает помехи, падение напряжения и перегружает электросети, что может вызвать проблемы у других потребителей и даже стать причиной аварий.

Как обеспечить плавный пуск двигателя

Существуют несколько вариантов уменьшения пускового тока, которые используются на практике.

1. Применение преобразователей частоты. В этом случае можно обеспечить сколь угодно долгий разгон, а также ограничить превышение номинального тока, например, на уровне 110%. Это лучший способ плавного пуска, однако, он используется далеко не всегда, поскольку преобразователь частоты – дорогостоящее электронное устройство, которое имеет множество функций. Если нужно только ограничение пускового тока и плавный разгон, преобразователь частоты будет избыточен, и большинство его функций останутся не востребованы.

2. Схема «Звезда – Треугольник». Двигатель при этом должен быть таким, чтобы номинальное напряжение питания при включении его обмоток «треугольником» было 380 В. В этом случае двигатель запускается в два этапа. На этапе разгона обмотки включаются «звездой». Таким образом получается, что 380 В подается на схему, которая для нормальной работы требует напряжения порядка 660 В. Поскольку двигатель в «звезде» работает при пониженном напряжении, разгон (выход на рабочие обороты) получается сравнительно плавным. На втором этапе обмотки включаются «треугольником», и двигатель выходит на свою номинальную мощность. Минус этого способа – разгон получается ступенчатым, а пусковые токи могут принимать большое значение.

3. Когда речь идет только о минимизации пускового тока, наиболее оптимальный вариант – использование устройства плавного пуска (softstarter).

Ниже рассмотрим принципы работы устройств плавного пуска (УПП) и схемы их включения.

Как работает устройство плавного пуска

Рассмотрим пошагово, какие процессы происходят при работе УПП, и какие регулировки влияют на его работу.

В минимальной конфигурации устройства плавного пуска (УПП) имеют три регулировки – время разгона, время торможения, и напряжение пуска.

При включении действующее напряжение на двигателе определяется регулировкой напряжения пуска, которое обычно составляет 30…80 % от номинала. Понижение напряжения и его регулировка производится тиристорами, которые открываются (пропускают ток) только в части полупериода сетевого напряжения. Фазой открытия тиристоров можно менять напряжение на двигателе.

Таким образом, регулируя фазу открытия тиристоров, можно менять ток и крутящий момент двигателя.

В зависимости от конкретного случая может потребоваться большой начальный момент, чтобы двигатель мог тронуться с места. Но для уменьшения пускового тока начальное напряжение лучше устанавливать минимально возможным.

При большом времени разгона пусковой ток будет минимальным. Однако, следует выбирать его оптимальным, обычно 10…20 секунд, в зависимости от типа нагрузки. При слишком большом времени разгона возможен излишний нагрев тиристоров. Критерием оптимального времени разгона служит время выхода двигателя на номинальные обороты и номинальный рабочий ток. По истечении времени разгона включается контактор байпаса, который может быть установлен внутри УПП, или быть внешним. Во время работы двигателя на номинальном режиме весь питающий ток идет только через этот контактор, при этом тиристоры в работе не участвуют.

Если пришел сигнал на остановку двигателя, контактор байпаса выключается. Вступают в работу тиристоры, которые работают в обратном режиме – постепенно уменьшают фазу (время открытия в течение полупериода) с максимальной до нуля. Если время торможения не важно, то можно его установить минимальным (0-2 секунды), это увеличит ресурс тиристоров, и улучшит тепловой режим электрощита в целом. Двигатель будет останавливаться на выбеге, к ак при питании через обычный контактор. Но если важно исключить гидроудар, или плавно замедлить движение объектов без их резкой остановки и падения, то функция плавной остановки будет очень полезной.

В УПП также могут присутствовать такие регулировки: управление крутящим моментом двигателя, конечное напряжение при останове, номинальный ток двигателя, ограничение пускового тока. Современные УПП имеют ЖК-дисплей и кнопки управления, которые позволяют конфигурировать несколько десятков различных параметров для тонкой настройки.

Схемы включения

Как во всех подобных устройствах, в схеме включения УПП имеется силовая часть, и часть управления.

Силовая часть схемы – это та часть, через которую проходит ток питания двигателя. Ток двигателя поступает через силовые клеммы L1, L2, L3 (или R, S, T) на входы тиристоров или контактора байпаса, и затем через выходные клеммы T1, T2, T3 (U, V, W) подается на двигатель.

Схема управления включает в себя в основном цепи запуска и остановки. Напряжение питания цепей управления обычно составляет 24…220 В, и может быть внешним, либо браться из УПП.

С участием УПП можно реализовать схему плавного пуска электродвигателя с реверсом. Для этого нужно на входе установить реверсивный контактор по классической схеме. Важно сделать блокировку для предотвращения реверса двигателя во время его вращения.

Допускается запускать УПП и начинать вращение двигателя подачей питания на цепи управления и силовые цепи. Это может быть удобно при дистанционной подаче силового питания. Однако, при этом следует предусмотреть меры безопасности – обслуживающий персонал должен понимать, что при подаче питания на УПП двигатель может начать вращаться.

Пример схемы

Рассмотрим для примера схему включения УПП ABBPSTX.

В силовую часть входят: автомат защиты двигателя (вводной), тиристоры и контактор байпаса (внутри УПС), и собственно двигатель.

Для питания цепей управления подается фазное напряжение 220В и нейтраль на клеммы 1, 2. В УПП имеется встроенный блок питания, который вырабатывает напряжение 24 В для питания органов управления. Допускается также применение внешнего БП 24 В, при этом напряжение на клеммы 1, 2 подавать не нужно.

При соответствующем подключении и настройках кнопки могут быть как с фиксацией, так и без. Управление может производиться не только с кнопок, но и через контакты реле или контроллера.

Имеются и другие входы для различных режимов работы, а также три выходных реле с сухими контактами, которые могут использоваться по необходимости для включения дополнительных контакторов и индикации.

Защита

В дешевых УПП часто не реализована защита от перегрузки по току, перегреву и короткому замыканию. В таких случаях необходимо устанавливать нужную защиту и включать УПП по схеме, рекомендованной производителем.

В состав защиты могут входить:

  • Мотор-автомат (автомат защиты двигателя),
  • Полупроводниковые предохранители, либо защитные автоматы с характеристикой «В»,
  • Тепловое реле,
  • Короткое либо межвитковое замыкание в обмотках двигателя,
  • Контактор аварийной цепи, выключающий питание УПП при срабатывании внутреннего аварийного реле либо нажатии кнопки «Аварийный останов».

Пример неправильной установки защиты, в результате которой произошел пожар:

Следует сказать, что даже если в УПП входят все виды защит, необходимо на вводе силового питания и питания схемы управления устанавливать соответствующие защитные автоматы либо предохранители.

Двухфазные УПП

В некоторых бюджетных моделях управление выходным напряжением происходит только по двум фазам. Таким образом, происходит экономия на тиристорах и на одном контакте контактора байпаса.

Это решение имеет право на жизнь, и главный плюс таких УПП – цена.

Однако, имеются минусы, о которых стоит знать:

  • При запуске и торможении происходит перекос фаз, который приводит к дополнительному нагреву двигателя,
  • Пусковой ток по «прямой» фазе почти не уменьшается,
  • Постоянное присутствие фазного напряжения на двигателе представляет опасность для персонала.

Заключение

УПП нашли достойное место там, где не нужна регулировка скорости вращения двигателя, но важным аспектом является минимизация пусковых перегрузок питающей сети и приводимых в движение механизмов. Однако, в последнее время их всё больше вытесняют преобразователи частоты, которые имеют гораздо более широкий спектр возможностей управления двигателем.

Основные критерии выбора

Плавный пуск можно реализовать различными способами и темпами нарастания электротока. Поэтому первое, от чего нужно отталкиваться – параметры работы асинхронных электродвигателей.

Среди них вам пригодятся:

  • Значение тока при запуске электродвигателя, который удобнее всего измерить клещами эмпирическим методом. В лабораторных условиях применяются специальные приборы, фиксирующие максимум, они куда точнее, но и стоят дороже.
  • Рабочий ток – необходим для определения соотношения нагрузок устройства плавного включения.
  • Время пуска – временной промежуток, за который мотор набирает номинальную частоту и выравнивается до номинального тока.
  • Время остановки – регламентируется не всеми техпроцессами, так как не в каждом случае требуется плавная остановка.

Также важно определять количество включений за единицу времени, в среднем, устройство плавного пуска необходимо при 2 – 3 манипуляциях за час. Тогда затраты на приобретение и установку однозначно окупятся за счет экономии моторесурса трехфазного электродвигателя.

Выбор по классификации пуска

Следующим критерием для выбора устройства плавного запуска будет степень тяжести запускаемого агрегата.

Согласно принятой классификации выделяют три категории:

  • Легкий пуск – считается такая ситуация, при которой пусковая отличается от номинальной мощности не более чем в 3 раза. Сюда относятся приспособления со слабой механической нагрузкой – вентиляторы, насосы, двигатели с холостым пуском и прочие.

Рис. 2. Пример легкого пуска

  • Средний пуск – вариант, когда претерпевается перегрузка в 4 раза и время запуска является достаточно продолжительным, от 30 до 50 секунд. К ним относятся различные смесители, дробильные установки, некоторые конвейеры и т.д.
  • Тяжелый пуск – сюда относятся агрегаты, выдающие 6-7 кратное превышение. Это всевозможные крановые электрические машины и лебедки с изначальной нагрузкой, сепараторы, шнековое оборудование, насосы и т.д.

Расчет категории выполняется путем деления тока при запуске на рабочий ток в номинальном режиме. Если величина перегрузки окажется слишком большой, то помимо мягкого пуска вам нужно будет использовать еще и частотное регулирование.

Способ управления

В зависимости от способа включения и отключения устройства плавного запуска они подразделяются на аналоговые и цифровые. Сегодня на рынке практически невозможно приобрести аналоговый УПП, так как производители используют электронику. Аналоговое устройство функционирует посредством потенциометра и переключателя. За основу цифрового взято микроконтроллер, оценивающий текущую ситуацию в сети и подающий управляющие команды.

Цифровые модели оснащаются всевозможными анализаторами, системами контроля рабочих параметров, защитами и т.д. Некоторые из них оснащаются функцией удаленного доступа и все процессы можно видеть и регулировать с помощью мобильного приложения.

Рис. 3. Цифровое устройство плавного пуска с программируемыми функциями

Отдельно обратите внимание на следующие функции, которые могут вам пригодиться для реализации тех или иных технологических операций:

  • защита от перегрузки – неотъемлемая составляющая большинства устройств плавного пуска;
  • блок плавного разгона электродвигателя – требуется для предотвращения рывков на начальном этапе.;
  • блок импульсного разгона, когда первый толчок вала осуществляется на максимальном моменте, чтобы сдвинуть его с большой нагрузкой;
  • плавное торможение – нужен в тех ситуациях, когда от способа остановки двигателя зависит возможность повторного запуска или техпроцесс не допускает резкого прерывания;
  • защиты от перекоса по фазам, обрыва линии, снижения рабочих токов или падения частоты.

Функция шунтирования

При постоянной работе электродвигателя, устройство плавного запуска воспринимает его рабочую нагрузку, пропуская через основную линию. От этого полупроводниковый переход подвергается преждевременному изнашиванию, что обуславливает сокращение срока службы. Для предотвращения подобного эффекта после запуска электрического мотора происходит шунтирование устройства плавного пуска контактами пускателя.

Такая опция актуальна для электрических машин с большими номиналами рабочих токов. Некоторые модели устройств плавного запуска укомплектованы такими контакторами с завода, для других шунт устанавливается отдельно, пример раздельной установки показан на рисунке ниже:

Рис. 4. Устройство плавного пуска с отдельными контакторами

После шунтирования питание на электрическую машину будет подаваться напрямую от сети.

Количество фаз

По числу фаз устройство плавного пуска подразделяется на двухфазные и трехфазные, в каждом из них задействуется две или три фазы соответственно. В первом варианте пуск осуществляется через две фазы, а третью подключают к электрической машине напрямую. Недостатком двухфазных моделей для плавного пуска является несимметричность системы, но такие устройства обладают более низкой ценой и меньшими габаритами.

Трехфазные агрегаты плавного пуска более дорогие, но их работа полностью симметрична, их применение оправдано для процессов с частыми коммутациями и тяжелой нагрузкой.

Существует категория компактных устройств, работающих напрямую от бытовой сети. Они предназначены для пуска маломощный домашних установок.

Что такое устройство плавного пуска

Устройство плавного пуска (УПП) – это электротехнический прибор, который применяется в работе асинхронных двигателей и позволяет контролировать и управлять его запуском и параметрами для безопасной работы в сети переменного тока. Такое устройство снижает воздействие на двигатель ряда негативных факторов, в том числе уменьшает вероятность повышенного нагрева двигателя, устраняет рывки, обеспечивая плавный запуск и выход на рабочую нагрузку. Также устройства плавного пуска снижают негативное влияние на электрическую сеть посредством уменьшения пусковых токов электродвигателя.

Часто устройство плавного пуска электротехнические специалисты и люди, связанные с работой электродвигателей, называют такие приборы «мягкими пускателями». Это связано с тем, что на английском языке (а большинство качественных устройств – импортного производства) эти устройства называются «soft starter», что и означает «мягкий пускатель».

Плавный пуск электродвигателей с помощью преобразователей частоты и мягких пускателей позволяет решать большое количество задач и управлять работой электродвигателя в широких пределах его параметров. Особенно часто УПП применяют при работе в условиях тяжелого пуска (с большой инерцией или запуском под нагрузкой с четырехкратными пусковыми токами, с разгоном двигателя не менее 30 секунд) и особо тяжелого пуска (при шести или восьмикратных значения пусковых токов и большим временем разгона двигателя).

Также УПП применяют при сниженной или ограниченной мощности электрической сети, когда пусковые токи могут создавать значительные перегрузки в сети, в том числе с влиянием на автоматическое защитное оборудование, которое при высоких значениях пускового тока, даже кратковременного воздействия, отключает питание.

Сфера применения устройств плавного пуска достаточно обширна: их применяют в работе насосных агрегатов, в вентиляционном и компрессорном оборудовании, на электродвигателях тяжелых производств и в строительстве, в дробильном оборудовании, на конвейерах, эскалаторах и в других механизмах и оборудовании.

Когда УПП необходимо

Некоторые машины не сразу дают понять, что нуждаются в сглаживающем механизме, однако чем раньше будет настроен плавный запуск, тем дольше и качественнее прослужит вся система. К сожалению, чаще всего задумываются о подключении УПП только тогда, когда сам двигатель говорит о губительности пусковых процессов. Чтобы понять это достаточно уловить одну из самых распространенных “показательных” ситуаций:

Источник питания не справляется со слишком тяжелым пуском. Например, сеть не способна выдавать требуемые мощности или обеспечивает выработку на максимальных уровнях функционирования, лампочки отключаются, срабатывают автоматические выключатели, отказываются запускаться некоторые контакторы, реле, генератор.

Запуску двигателя препятствуют защитные системы, срабатывая на превышение допустимых нагрузок. При отличном запуске пакетник “срабатывает” до достижения необходимой частоты.

Чтобы не допустить выхода электродвигателя из строя, рекомендуется как можно скорее настроить плавность запуска и торможения системы. Сделать это несложно, так как даже новичку под силу выбрать, установить и подключить устройство плавного пуска своими руками.

Как работает УПП

Рисунок 2. Общая схема устройств плавного пуска.

Устройство мягкого пуска – это изготовленное на основе тиристоров электронное устройство, которое регулирует напряжение. Оно предназначено для постепенного разгона асинхронного электропривода до номинальной скорости за счет плавного управляемого увеличения напряжения на статоре. Регулировка напряжения выполняется системой импульсно-фазового управления при помощи выставления нужного угла открытия тиристоров. Чем этот показатель больше, тем выше напряжение, которое прикладывается к приводу.

Вращательный момент асинхронного электропривода пропорционален квадрату напряжения, поэтому, когда ограничивается напряжение, то уменьшаются и ударные пусковые моменты. Вследствие постепенного повышения напряжения на приводе пусковые токи снижаются. Электродвигатель при этом запускается быстро, хотя и медленнее, чем при пуске прямым способом.

Параметры пускового тока устанавливаются путем выбора начального и конечного углов открытия тиристоров, а также необходимой продолжительности повышения напряжения (периодом мягкого пуска). Устанавливая различные параметры ограничения тока электродвигателя во время пуска можно получить разнообразные механические характеристики привода. Их график показан на рисунке 3.

Рисунок 3. Механические характеристики электродвигателя при различных показателях напряжения.

Но, независимо от перегрузки по току, при небольших скоростях вращения, которые наблюдаются в начале запуска, момент, развивающийся двигателем значительно ниже номинального. Поэтому использование устройств мягкого пуска для запуска насосов с большим статистическим моментом на валу при малых скоростях вращения возможно лишь со значительной перегрузкой по току. Ее можно сопоставить с токовой перегрузкой, которая появляется при пуске напрямую. Стоит отметить, что какие бы параметры и тип изменения нагрузки на валу не был, запустить электродвигатель с применением УПП при перегрузке по току меньше 1,5 Iном почти невозможно.

Плавный пуск для скважинного насоса

Скважинный насос, вследствие необходимости обеспечить высокую производительность при довольно небольших поперечных габаритах, представляет собой сложное устройство, работающее в довольно жестких условиях. А если учесть, что монтаж его (а также демонтаж) представляет собой довольно трудоемкую работу, то надежность скважинного насоса приобретает первостепенное значение. Одним из факторов, оказывающих решающее влияние на продолжительность работы этого агрегата, являются пусковые токи. Вследствие того, что вращающиеся части электродвигателя и самого насоса имеют определенную инерцию, в отличие от тока (то есть величина тока может практически мгновенно достигать очень высоких значений), то при включении возникают пусковые токи, которые в 4-10 раз превышают номинальные! А если еще скважинный насос включается часто? Например, из-за небольшого объема мембранного гидроаккумулятора или неправильной настройки реле давления? Понятно, что, в конце концов, изоляция обмотки электродвигателя не выдержит таких высоких тепловых нагрузок и произойдет короткое замыкание, следствием которого явится выход насоса из строя. Чтобы уменьшить пусковые токи, используются различные системы плавного пуска.

Виды плавного пуска

В настоящее время для скважинных насосов в основном используются две системы плавного пуска:

  1. 1.Плавный пускSS . При этом способе при помощи электроники на электродвигатель подается плавно повышающееся напряжение (а значит и плавно повышающийся ток). Регулировка напряжения производится путем фазового управления. По такому принципу работают многие станции (пульты) управления скважинными насосами, как отечественных, так и зарубежных торговых марок: Каскад, Высота, Grundfos, Pedrollo и др.
  2. 2.Плавный пуск с помощью преобразования частоты. Этот способ является наиболее совершенным с точки зрения снижения пусковых токов. Преобразование частоты позволяет удерживать пусковой ток на уровне номинального. Основной недостаток станций (пультов) управления с частотно-регулируемым приводом – это их высокая стоимость, сравнимая со стоимостью самого насоса. Среди отечественных моделей стоит выделить СТЭП, СУ-ЧЭ, СУН. АСУН. Наиболее популярными зарубежными моделями являются SIRIO и SIRIO-ENTRY 230 итальянской торговой марки ITALTECNICA. Следует сказать, что в скважинных насосахсерии SQ/SQE встроена система плавного пуска на основе преобразования частоты.

Преимущества плавного пуска

  1. Снижение пусковых токов (в случае с частотно-регулируемым приводом пусковые токи уменьшаются до номинальных).
  2. Снижение механических нагрузок на рабочее колесо и подшипники скважинного насоса.
  3. Уменьшение или вовсе предотвращения гидроудара, возникающего в момент включения насоса. Гидроудар отрицательно воздействует не только на сам насос, но и на скважину, вызывая дополнительные нагрузки на стыки обсадных труб и вызывая быстрый износ фильтров. Как следствие, скважина начинает песковать.

На основе частотно-регулируемой системы плавного пуска можно реализовать управление мощностью насосы путем изменения частоты вращения его двигателя. То есть система управления точно подбирает частоту вращения электродвигателя, а значит и его мощность в соответствии с требуемой в данный момент производительностью, поддерживая постоянное давление в сети. Другими словами, на работу электродвигателя расходуется ровно столько электроэнергии, сколько нужно для обеспечения требуемой производительности и ни джоулем больше. Такая система реализована в скважинных насосах Grundfos серии SQE.

Прямой пуск от сети является самым простым и дешевым решением, но большой пусковой ток накладывает ограничения на его использование. Чтобы избавиться от этого недостатка, применяют другие способы:

1. Устройство плавного пуска — это наиболее эффективный метод уменьшения величины пускового тока. Один из его главных недостатков — большая стоимость преобразователя.

Для насосов Grundfos SQ и SQE нет ограничений по количеству запусков в час, потому что преобразователь частоты и устройство плавного пуска уже встроены в корпус двигателя.

Упрощенно работа УПП заключается в плавном наращивании напряжения на двигателе в течении 2-х секунд. За это время ротор успевает раскрутиться до необходимых оборотов, не увеличивая нагрузку на сеть.

2. Последовательное включение через трансформатор с несколькими обмотками. Для насосов обычно применяется 1 — 2 секции, которые ограничивают ток при включении, а по мере набора насосом оборотов по очереди выводятся из цепи. Первоначальное снижение напряжения происходит максимум до 50% от напряжения питания.

3. Для трехфазных двигателей насосов мощностью более 3 киловатт можно применить схему пуска с переключением со звезды на треугольник . В момент пуска двигатель включается по схеме «звезда», дающая снижение пускового тока в 3 раза, и лишь после разгона двигателя соединение переключается по схеме «треугольник».