Что такое коэффициент трансформации трансформатора

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.

Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Какой должен быть ток холостого хода трансформатора?

Есть распространенное мнение, что чем меньше ток ХХ тем лучше. Я не помню уж всей теории, но качественно ситуация выглядит так : слишком малый ток ХХ приводит к большой «просадке» напряжения под нагрузкой и к невозможности получить от трансформатора габаритной мощности. Мы просто не реализуем возможности железа по допустимой индукции в железе. Тратим напрасно медь. Хорошее железо держит 1.8 Тесла плохое насыщается пр 1 Тл.
Слишком большой ток ХХ ведет к перегреву трансформатора. На холостом ходу контролируют осциллографом форму тока в первичной обмотке. Она не должна напоминать «шапку буденовку». Когда изготовитель трансформатора определяет ток холостого хода как 10%, то берем 2500Вт делим на 220 В получаем 11.36 А. 10% от этой величины 1.13 А. Табличку со справочника для трансформаторов ОСМ-1 я приводил выше.
Для расчетов задаются допустимым падение напряжения под полной нагрузкой и допустимым перегревом. Хотя имеются методы расчета минимизирующие вес, габариты, стоимость, поле рассеяния трансформатора.
Так кажется?

Последний раз редактировалось UA2FP; 28.03.2010 в 14:32 .

Трансформатор тока

Формула для вычисления коэффициента трансформации ТТ:

Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:

Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.

Подробнее о трансформаторе тока(ТТ): Читать статью

Электрик в доме

Автор: admin, 11 Авг 2013

Очень часто для питания радиолюбительских конструкций или для питания готовых устройств требуется понижающий трансформатор. Точный расчёт силового трансформатора очень сложен, но для приблизительного расчёта можно воспользоваться упрощёнными формулами. В этой статье рассмотрим как рассчитать трансформатор, собранный на наиболее часто встречающемся магнитопроводе из Ш-образных пластин.

Для расчёта трансформатора нам нужно знать: желаемое напряжение на вторичной обмотке и ток нагрузки. Ели ток нагрузки не известен, но известна его мощность, то вычислить ток не составит труда — нужно мощность поделить на напряжение на вторичной обмотке.

1. Расчёт тока вторичной обмотки

I2 = 1,5*Iн, где

  • I2 — ток во вторичной обмотке, А,
  • Iн — ток нагрузки, А.

2. Определение мощности, потребляемой от вторичной обмотки

P2 = U2*I2, где

  • P2 — мощность вторичной обмотки, Вт,
  • U2 — напряжение вторичной обмотки, В,
  • I2 — ток вторичной обмотки, А.

Если необходимо несколько вторичных обмоток, то считаем мощность каждой обмотки, а затем складываем мощности всех вторичных обмоток и подставляем в следующую формулу.

3. Определение мощности трансформатора

Pт = 1,25*P2, где

  • Рт — общая мощность трансформатора, Вт,
  • Р2 — мощность вторичной обмотки, Вт.

4. Расчёт тока первичной обмотки

I1 = Pт/U1, где

  • I1 — ток в первичной обмотке трансформатора, А,
  • Pт — мощность трансформатора, Вт,
  • U1 — напряжение первичной обмотки, В.

5. Определение необходимого сечения сердечника магнитопровода

S = 1,3*, где

  • S — площадь сечения сердечника магнитопровода, см²,
  • Pт — мощность трансформатора, Вт.

Следует заметить, что магнитопровод нужно подбирать так, чтобы отношение ширины сердечника (центральной пластины) магнитопровода к толщине набора было в пределах 1 ÷ 2.

6. Расчёт числа витков в первичной обмотке

W1 = 50*U1/S, где

  • W1 — число витков первичной обмотки, шт,
  • U1 — напряжение первичной обмотки, В,
  • S — площадь сечения сердечника магнитопровода, см².

7. Расчёт числа витков во вторичной обмотке

W2 = 55* U2/S, где

  • W2 — число витков вторичной обмотки, шт,
  • U1 — напряжение вторичной обмотки, В,
  • S — площадь сечения сердечника магнитопровода, см².

8. Определение диаметров проводов обмоток трансформатора

d = 0,632* I, где

  • d — диаметр провода, мм,
  • I — ток обмотки, А (соответственно подставляем I1 и I2 для первичной и вторичной обмоток).

Расчёт приведён для медного провода.

9. Проверка заполняемости окон магнитопровода

После подбора пластин магнитопровода следует проверить влезет ли провод на каркас трансформатора.

Sо = 50*Pт, где

  • Sо — площадь, занимаемая намотанными проводами, в одном окне магнитопровода, мм 2 ,
  • Pт — мощность трансформатора, Вт.

Если площадь окна подобранного магнитопровода больше или равна вычисленной, то провод влезет.

Рекомендации по сборке и намотке трансформатора

Пластины магнитопровода нужно собирать вперекрышку, как это показано на рисунке вверху.

Магнитопровод следует стянуть обоймой или шпильками с гайками, шпильки необходимо обернуть бумагой или другим изоляционным материалом, чтобы шпильки не замыкали пластины. Если магнитопровод плохо стянут, то он будет гудеть.

Провода следует наматывать равномерно и плотно(иначе могут не влезть). Между каждым рядом надо прокладывать тонкую бумагу или лавсановую плёнку в 1-2 слоя и 3-4 слоя между обмотками.

Для удобства намотки можно сделать простое приспособление, показанное на рисунке:

Приспособление для намотки трансформатора

Состоит устройство из двух фанерных стоек, закреплённых на общем основании и вставленного в них металлического прутка, с одного конца изогнутого в виде ручки. Одной рукой крутим ручку, второй направляем провод, катушку с проводом можно наподобие разместить ещё на одном прутке, но уже без ручки.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети. Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции. Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Например, минимальный коэффициент трансформации — 15/5, расчетный уровень рабочего тока — 25% от максимального, ток во вторичной обмотке трансформатора — 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ — 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение — 30/5.

Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов

Новости

Новые города на карте поставок

Мы поставляем оборудование во все регионы нашей огромной страны.

На нашей карте уже более сотни городов от Анадыря на востоке до Калининграда на западе, от Апатитов на севере до Махачкалы на юге.

C каждым годом расширяется география поставок. Растет объем поставок на экспорт — наше оборудование работает в Белоруссии, Казахстане, Киргизии и Узбекистане.

Чукотское лето

В связи с развитием Северного морского пути Чукотка в настоящее время переживает второе рождение. Восстанавливаются заброшенные поселки, активно развивается портовая инфраструктура на побережье.

В 2018 году мы поставили двухтрансформаторную подстанцию в рамках реконструкции районной больницы города-порта Певек.

В 2019 году было отгружено уже пять подстанций в различные районы Чукотского полуострова.

Одна киосковая подстанция отправилась в порт Провидения