Что такое ШИМ; широтно-импульсная модуляция

Что такое ШИМ — широтно-импульсная модуляция?

Микропроцессоры работают исключительно с цифровыми сигналами: с логическим нулем (0В) или с логической единицей (5В или 3.3В). По этой причине на выходе микропроцессор не может сформировать промежуточное напряжение. Применение для решения таких задач внешних ЦАП нецелесообразно из-за сложности. Специально для этого разработана широтно-импульсная модуляция — определенный процесс управления мощностью, идущей к нагрузке, методом изменения скважности импульсов постоянной частотности.

Действующие процессы

Используются чаще всего данные контроллеры для работы с альтернативными источниками энергии, к которым относятся:

  • ветровые установки;
  • модули с солнечными батареями;
  • блоки с гидротурбинами;
  • дизельные источники питания.

Это делает их востребованными в современных домах и предприятиях.

В мировой научной среде ШИМ расшифровывается как pulse-width modulation (PWM), что в переводе означает широтно-импульсную модуляцию. На деле это – операция управления мощностью, подходящей к потребителю, с помощью коррекции скважности импульсов с неизменной частотой.

Четырехканальный PWM -контроллер

ШИМ регулятор мощности встречается нескольких типов:

  • цифровой;
  • аналоговый;
  • с двумя уровнями;
  • с тремя уровнями.

ВИДЕО: Принцип работы ШИМ контроллера UC3843 в импульсном блоке питания

Признаки неисправности, их устранение

Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

Остановка сразу после запуска

Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе.

Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

Импульсный модулятор не стартует

Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме.

Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

Проблемы с напряжением

Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера.

Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.

Отключение блока питания защитой

При запуске широтно-импульсного модулятора, блок питания отключается защитой. При проверке ключевых транзисторов короткое замыкание не обнаруживается. Такие симптомы могут свидетельствовать о неисправности ШИМ контроллера или драйвера ключей.

В этом случае нужно произвести замер сопротивлений между затвором и истоком ключей в каждой фазе. Заниженное значение сопротивления может указывать на неисправность драйвера. При необходимости делается замена драйверов.

Популярные модели

На рынке товаров, используемых для производства электрической энергии посредством использования альтернативных источников, представлено достаточно большое количество моделей контроллеров данного типа, различающихся по техническим характеристикам, стоимости и бренду производителя.

В настоящее время, среди пользователей, популярностью пользуются модели отечественных и зарубежных производителей, это:

  • Модель КЭС 100/20 MPPT (Россия) – рассчитана на максимальный ток заряда до 20 А, напряжение на выходе до 100 В.
  • Модель КЭС DOMINATOR MPPT 250/60 (Россия) – максимальный ток заряда до 60 А, напряжение на выходе до 250 В.
  • Модель Epsolar MPPT TRACER-2215BN 20А 12/24В (Китай) – максимальный ток заряда 20А, напряжение на выходе до 150 В.
  • Модель IT6415ND 60A 12V/24V/36 В (Китай) – максимальный ток заряда 60 А, напряжение на выходе до 150 В.
  • Модель Victron BlueSolar 100/15 12/24В 15А (Голландия) – максимальный ток заряда 15А, напряжение на выходе 100 В.
  • Модель Victron BlueSolar 150/70 12/24/48В 70А (Голландия) – максимальный ток заряда 70 А, напряжение на выходе 150 В.

Кроме выше приведенных моделей, к реализации предлагается еще большое количество устройств данного типа, поэтому есть возможность выбрать модель, отвечающую предъявляемым к ней требованиям и личным предпочтениям пользователя.

Способы подключения контроллеров

Перед подключением необходимо убедиться, что напряжение солнечных панелей не превышает номинал контроллера. Если оно больше, надо сменить прибор на более мощный, способный работать с высокими показателями тока и напряжения.

Перед началом работ надо выделить для установки контроллера место с соответствующими условиями — сухое, чистое, отапливаемое. Не должно быть контакта с солнечными лучами, не допускается наличие поблизости механизмов, создающих вибрацию.

Порядок подключения контроллеров PWM состоит из следующих этапов:

  • присоединение аккумуляторов к соответствующим клеммам прибора. Важно проследить за соблюдением полярности
  • в точке подключения плюсового провода необходимо установить предохранитель
  • к соответствующим контактам подключить провода от солнечных панелей, соблюдая полярность
  • на выход нагрузки включить сигнальную лампу

Важно! Нарушать эту последовательность нельзя. Если сначала подключить солнечные модули, можно вывести контроллер солнечного заряда из строя, поскольку ему будет некуда отдавать полученное напряжение.

Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора. Его можно присоединять только к блоку АКБ.

Принцип подключения этих контроллеров не отличается от вышеизложенного, но могут потребоваться некоторые дополнения. Например, на мощных системах необходимо использовать кабель, выдерживающий плотность проходящего тока не менее 4 ампер на квадратный миллиметр сечения.

Перед присоединением рекомендуется еще раз выполнить несложный расчет (разделить максимальное значение силы тока на 4 и прибавить около 10-15 % на запас прочности). Это позволит обеспечить штатную работу коммутации, исключить нагрев и опасность возникновения пожара.

Перед началом подключения надо вынуть предохранители из солнечных панелей и блока АКБ. После соединения контроллера с аккумуляторами и солнечными модулями производится подключение заземляющего контура и датчика температуры. Проверяют правильность всех соединений, после чего обратно устанавливают предохранители и включают систему.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Контроллеры такого типа работают только на запуск или остановку зарядки АКБ при падении или повышении заряда. Они не учитывают дополнительные условия работы, не определяют оптимальный режим, выполняя только функции триггера, настроенного на переключение при достижении минимального и максимального значений.

Такие контроллеры в настоящее время сняты с производства и давно не используются, хотя в некоторых системах их еще можно встретить. Единственным достоинством можно назвать простоту схемы, делающую работу прибора надежной и устойчивой. Подключение выполняется путем присоединения входных и выходных проводов к аккумуляторам и солнечным панелям, никакой дополнительной коммутации не имеется.

Lenovo Z575 Wistron Z575 LZ575 переделка в режим UMA

Обыскал все форумы, литературу нашёл оригинальную и схему как это сделать, но вот незадача производитель не промаркировал , на плате резисторыR1722 -R1723? искал их долго и нудно, боардвьюшек нет, картинок местоположения нет, помог только один товарищ из Одессы, прислал искомое фото, оно было в низком разрешении (разобрать можно)так что переделал фото подписал, выкладываю сюда. Делитесь и пользуйтесь! Надеюсь кому-то поможет!

Читайте также  Тиристорный регулятор

Как сделать ШИМ блок питания (контроллер)

Как вы уже поняли, сердцем ШИМ контроллера будет мультивибратор или модулятор. Мультивибратор можно сделать даже на двух транзисторах, в виде самого рядового мультивибратора. А модулятор можно сделать на базе микроконтроллера. Чаще всего применяются именно микроконтроллеры.
После остается лишь преобразовать низкий сигнал в управляющий силовой. Скажем с помощью транзистора. Пример для светодиода.

Если наша нагрузка имеет индуктивную составляющую, то транзистор защищается с помощью диода, который подключается параллельно нагрузке.

Это вроде того, как диод используется при управлении транзистором реле. В данном случае обмотка двигателя также может выдать высокий ток, который будет теперь идти не только через транзистор, но и через диод.
О конкретных примерах БП ШИМ можно узнать из статьи «Драйвер для светодиодов».

С появлением однокристальных микро-ЭВМ связывают начало эры массового применения компьютерной автоматизации в области управления. По-видимому [ источник не указан 271 день ] , это обстоятельство и определило термин «контроллер» (англ. controller — регулятор, управляющее устройство).

В связи со спадом отечественного производства и возросшим импортом техники, в том числе вычислительной, термин «микроконтроллер» (МК) вытеснил из употребления ранее использовавшийся термин «однокристальная микроЭВМ».

Первый патент на однокристальную микроЭВМ был выдан в 1971 году инженерам М. Кочрену и Г. Буну, сотрудникам американской Texas Instruments. Именно они предложили на одном кристалле разместить не только процессор, но и память с устройствами ввода-вывода.

В 1976 году [1] американская фирма Intel выпускает микроконтроллер i8048. В 1978 году фирма Motorola выпустила свой первый микроконтроллер MC6801, совместимый по системе команд с выпущенным ранее микропроцессором MC6800. Через 4 года, в 1980 году, Intel выпускает следующий микроконтроллер: i8051. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке. С точки зрения технологии микроконтроллер i8051 являлся для своего времени очень сложным изделием — в кристалле было использовано 128 тыс. транзисторов, что в 4 раза превышало количество транзисторов в 16-разрядном микропроцессоре i8086.

В СССР велись разработки оригинальных микроконтроллеров, также осваивался выпуск клонов наиболее удачных зарубежных образцов [2] [3] [4] [5] . В 1979 году в СССР НИИ ТТ разработали однокристальную 16-разрядную ЭВМ К1801ВЕ1, микроархитектура которой получила название «Электроника НЦ».

На 2013 год существовало более 200 модификаций микроконтроллеров, совместимых с i8051, выпускаемых двумя десятками компаний, и большое количество микроконтроллеров других типов. Популярностью у разработчиков пользуются 8-битные, 16-битные и 32-битные микроконтроллеры PIC фирмы Microchip Technology, микроконтроллеры AVR фирмы Atmel (с 2016 года производятся также фирмой Microchip [6] ), 16-битные MSP430 фирмы TI, а также 32-битные микроконтроллеры архитектуры ARM, которую разрабатывает фирма ARM Limited и продаёт лицензии другим фирмам для их производства. Несмотря на популярность в России микроконтроллеров, упомянутых выше, на 2009 год мировой рейтинг по объёму продаж, по данным Gartner Group, выглядел иначе: первое место с большим отрывом занимала Renesas Electronics на втором Freescale, на третьем Samsung, затем шли Microchip и TI, далее все остальные [7] .

Шим контроллер

Непонимание работы ШИМ или PWM ( Pulse-width modulation ) часто приводит не только к их неправильному использованию, но даже к ошибкам в проектировании устройств использующих ШИМ для управления. Здесь, ограничившись конкретным применением, я попытаюсь рассказать что такое ШИМ, для чего она требуется и как работает.

Сначала, что такое ШИМ.
Широтно-импульсная модуляция (ШИМ, англ. Pulse-width modulation (PWM)) — управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом.
Когда нужна ШИМ

Главной причиной применения ШИМ является необходимость обеспечить пониженным постоянным напряжением силовых устройств электроники при сохранении высокого КПД, особенно в управляемых электроприводах.

Во внутренних сетях аппаратуры для питания устройств используется постоянное напряжение ограниченного набора напряжений, которые часто требуется изменить под требования конкретного устройства, стабилизировать или регулировать его. Это могут быть электроприводы постоянного тока, чипы, узлы радиоаппаратуры.

Регулировку можно осуществлять с помощью гасящих напряжение устройств: резисторов, транзисторов (если требуется регулировка). Главный недостаток такого решения потери мощности и повышенное тепловыделение на регулирующих устройствах.

Поскольку известно что выделяемая мощность равна :

P = I x U или P = I 2 x R Вт.

то чем больше ток I в цепи и падение напряжения U , тем больше потери мощности. Здесь R — величина сопротивления регулирующего элемента.

Представьте что требуется погасить хотя бы 3 V при токе нагрузки 10 A , это уже 30 Вт истраченных в пустую. А каждый ватт теряемой мощности не только снижает продолжительность работы источников питания, но и требует дополнительного оборудования для вывода выделяемого, этой мощностью, тепла.

Это относится к гасящим резисторам и полупроводниковым приборам тоже.

Но хорошо известно, что полупроводниковые приборы очень хорошо (с малыми потерями и тепловыделением) работают как ключи, когда имеют только два состояния открыт/закрыт.

Этот режим позволяет снизить потери на коммутирующем полупроводниковом приборе до уровня:

U нас для современных полупроводниковых коммутаторов приближается к 0,3 v и при потребляемых токах 10 А потери мощности будут приближаться к 3 Вт. Это в режиме ключа, а при работе в устройствах ШИМ и меньше.

В ШИМ в качестве ключевых элементов использует полупроводниковые приборы в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения).
В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность практически равна нулю.
Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю — выделяемая мощность также мала.
В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность выделяемая в ключе значительна, но так как длительность переходных состояний крайне мала, по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной.

Реализовать преимущества ключевого режима в схемах понижающих и регулирующих напряжение постоянного тока, позволило использование ШИМ.

Повторюсь, широтно-импульсная модуляция — управление средним значением напряжения на интегрирующей нагрузке путём изменения скважности импульсов, с помощью управляющего ключа.

Работа ШИМ на интегрирующую нагрузку показана на рис. 1.

Главным условиям такого применения ШИМ является наличие интегрирующей нагрузки.

Потому что амплитудное значение напряжения равно E .

Это могут быть интегрирующая RC, LC, RLC или RL цепи и механические интеграторы (например электромотор).

При работе ШИМ на интегрирующей нагрузке напряжение — эквивалентное постоянное напряжение изменяется в зависимости от скважности ( Q ) импульсов.

здесь: Q — скважность, t и — длительность импульса, T — период следования импульсов.

С учетом скважности эквивалентное постоянное напряжение будет равно:

E экв = Q x E Вольт

здесь: E экв — эквивалентное постоянное напряжение ( Вольт ), Q — скважность, E — напряжение источника от которого запитан ШИМ преобразователь ( Вольт ).

Реально на зажимы нагрузки ШИМ подается напряжение равное E , а работа совершаемая электрическим током (или число оборотов электродвигателя) определяется именно E экв . При восстановлении на интегрирующем конденсаторе получаем именно напряжение E экв.

Читайте также  5 квт сколько ампер

Мощность выделяемая на управляющем ключе, управляемом ШИМ равна:

Схема подключения нагрузки к ШИМ.

Никаких отличных от схемы включения электродвигателя на постоянном токе (частный случай нагрузки) схемных решений ШИМ не требует. Просто электродвичатель подключается к источнику питания работающего в режиме ШИМ. Разве что, в определенных ситуациях требуется ввести дополнительную фильтрацию помех возникающих на фронтах импульсов. Этот фильтр на рис. 2 в виде конденсаторов и демпфирующего диода.

На рис. 2 показано такое подключение.

Мы видим, что коммутатор (полевой транзистор) можно просто заменить на переменный резистор.

Схема PWM

В статье «Переходник для вентилятора 3 pin на 4 pin» http://de1fer.ru/?p=45#more-45 владелец блога приводит схему вентилятора с P WM .

здесь: GND — земля (общий), Control — контакт P WM управления, +12 — напряжение питания, Sense — вывод датчика оборотов.

В данной схеме управление возможно скорее постоянным током +I упр, чем ШИМ сигналом.

Для управления импульсным (ШИМ) сигналом требуется схема изображенная на рис. 4. Да и судя по параметрам транзистора «PWM» он выбирался именно для управления постоянным током. По крайней мере он будет нормально работать в таком режиме с вентилятором до 1,6 Вт.

А вот в импульсном режиме без конденсатора C , транзистор BC879 будет греться немного меньше чем на постоянном токе и возможен останов электродвигателя на малых длительностях токового импульса (малых оборотах) из-за его интегрирования на входной емкости C вх транзистора.

Основные параметры кремниевого биполярного высокочастотного n-p-n транзистора BC879 от SIEMENS

Pc max Ucb max Uce max Ueb max Ic max Tj max, °C Ft max
800mW 100V 80V 5V 1A 150°C 200MHz

В случае необходимости отключить PWM (ШИМ) управление в схеме показанной на рис. 3 необходимо просто соединить вывод Control с проводом +12v .

Есть другой вариант схемы вентилятора с P WM на форуме Radeon.ru

Существенных отличий от рис. 3 нет, только в качестве управляемого ШИМ ключа используется МОП полевой транзистор со встроенным или индуцированным каналом p- типа. Данная схема тоже может управляться как P WM так и постоянным напряжением (но рисковать не стоит — надо знать параметры транзистора).

Данная схема вполне работоспособна и не имеет недостатков схемы показанной на рис. 3.

Для отключения (в зависимости от типа транзистора) достаточно соединить вывод Control с проводом + или -.

Вниманию самодельщиков!

Я бы не рекомендовал применение вентиляторов имеющих встроенный PWM (4- pin ) одновременно с какими либо иным регуляторам оборотов вентилятора.

В случае если Вас не устраивает алгоритм управления PWM встроенного на материнскую (системную) плату.

И у Вас есть устраивающий Вас реобас (контроллер управления вентилятором), то используйте вентилятор с 3-pin соединитель.

Если вентилятор с PWM вам дорог или не имеет замены — то необходимо отключить PWM , способом описанным выше, заменив соединитель 4-pin на 3-pin и подключить к реобасу.

Но помните применение вентилятора с PWM в любом нештатном режиме не позволит достичь его максимальной производительности.

Применение одновременно с PWM — токового управления на постоянном токе не рекомендуется по причине снижение напряжения питания вентилятора на 10-20%, что не даст вывести такой вентилятор на полную производительность.

Применение одновременно с PWM — ШИМ по цепи питания может привести к периодической нестабильности работы вентилятора (возможно возникновение скользящих биений между частотами PWM — ШИМ по цепи питания систем) и создать неоднозначность для систем оснащенных системой стабилизации оборотов. Кроме того как и в предыдущем случае на 10-15% снизится результирующее напряжение на вентиляторе, что не даст вывести такой вентилятор на полную производительность.

Так что остановитесь на чем-то одном. Или используйте вентилятор с PWM , или применяйте внешнее управление вентилятором по цепи питания на вентиляторе с 3-pin разъемом.

Заключение

Применение PWM или ,как привыкли говорить мы, ШИМ повышает КПД понижающих напряжение устройств постоянного тока, что снижает общее тепловыделение электронных устройств с ШИМ.

ШИМ позволяет создавать компактные системы регулируемого электропривода постоянного тока большой мощности.

В современных устройствах постоянного тока управляющих напряжением и понижающих стабилизаторах напряжениях обычно регулировки выполняются с помощью ШИМ. Для этого выпускаются контроллеры требующие минимум навесных элементов.

Гасящим резисторам и реостатам сейчас можно сказать — прощай!