Как подключить потенциометр для преобразователя частоты

Задающее устройство выбирают исходя:

  • Из номинального сопротивления. Величина указана в паспорте частотника, она составляет 1-10 кОм. Главное условие при выборе номинала потенциометра – чтобы ток на аналоговом входе частотника не превысил допустимого значения.
  • Из формы характеристик. Для регулировки угловой скорости вала лучше выбрать реостат с максимально приближенной к линейной зависимости угла поворота от напряжения. При помощи устройств с логарифмической, обратнологарифмической, синусоидальной, косинусоидальной характеристиками сложно управлять скоростью вручную. Такие потенциометры используют для настройки регулятора, их характеристики выбирают исходя из параметров датчика, который предполагается использовать.
  • Из исполнения. Выносной потенциометр часто размещают непосредственно на станках или другом оборудовании. Пылевлагозащита корпуса устройства должна отвечать условиям эксплуатации.

При выборе также учитывают конструкцию реостата, производители преобразователей частоты рекомендуют долговечные проволочные резисторы.

1 Описание цифрового потенциометратипа X9C

Потенциометр, или переменный резистор – это электротехническое устройство, которое позволяет изменять сопротивление электрическому току. Классический (механический) потенциометр представляет собой два вывода, между которыми располагается третий – подвижный («скользящий»). Перемещая подвижный вывод, мы меняем сопротивление между ним и каждым из неподвижных вывода.

Принцип работы механического потенциометра

Электронный потенциометр – это аналог механического потенциометра, но с рядом преимуществ: он не имеет механических частей, он может управляться удалённо с помощью, например, микроконтроллера, и он существенно меньше по размеру.

Потенциометры широко применяются в различных электронных устройствах, где необходимо регулировать напряжение в процессе работы. Например, в роли подстроечных резисторов при настройке схем, в роли регуляторов громкости в аудио-устройствах, или регуляторов уровня освещения в осветительных приборах.

Будем использовать готовый модуль с цифровым потенциометром X9C102 (X9C103, X9C104, X9C503). Китайские друзья продают их меньше чем за 100 рублей.

Модуль с цифровым потенциометром X9C102, X9C103, X9C104 Модуль с цифровым потенциометром X9C103S

Цифровой потенциометр типа X9C может быть одного из следующих типов, различающихся максимальными сопротивлениями:

Название Максимальное сопротивление
X9C102 1 кОм
X9C103 10 кОм
X9C503 50 кОм
X9C104 100 кОм

В названии потенциометра X9C три цифры означают: значение и количество нулей, которое нужно приписать к значению, чтобы получить номинал. Например: 102 это 10 и 2 нуля, или 1000 Ом (1 кОм); 503 – это 50 и 3 нуля, или 50000 (50 кОм) т.п.

Подключение потенциометра к платам Ардуино

Схема подключения

Подключение потенциометра к ардуино выполняется в соответствии со схемой, представленной на рисунке:

Для этого три вывода потенциометра необходимо соединить с указанными выводами платы:

  • Черный – GND;
  • Красный – питание 5В;
  • Средний – от центрального вывода к аналоговому входу А0.

Изменяя положение вала подключенного потенциометра, происходит изменение параметра сопротивления, которое вызывает изменение показателя на нулевом пине платы ардуино. Считывание полученного значения напряжения аналогового импульса происходит в скетче с помощью команды analogRead ().

В плату Ардуино встроен аналого-цифровой преобразователь, способный считывать напряжение и переводить его в цифровые показатели со значением от нуля до 1023. При повороте указателя до конечного значения в одном из двух возможных направлений, напряжение на пине равно нулю, и, следовательно, напряжение, которое будет генерироваться составляет 0 В. При повороте вала до конца в противоположном направлении на пин поступает напряжение величиной 5В, а значит числовое значение будет составлять 1023.

Пример проекта

Примером реализации схемы подключения потенциометра может стать макетная плата с подключенным переменным резистором и светодиодом. При помощи потенциометра будет выполняться управление уровнем яркости свечения.

Для проведения работ следует подготовить такие детали:

  • 1 плату Arduino Uno
  • 1 беспаячную макетную плату
  • 1 светодиод
  • 1 резистор с сопротивлением 220 Ом
  • 6 проводов «папа-папа»
  • 1 потенциометр.

Для использования меньшего количества проводов от макетной платы к контроллеру следует подключить светодиод и потенциометр проводом земли к длинному рельсу минуса.

Пример скетча

В этом примере важно понимать, что яркость свечения светодиода управляется не напряжением подаваемым с потенциометра, а кодом.

В современной электронике принято использовать такие типы устройств:

  • изделия с однополярным питанием;
  • изделия двухполярным питанием;
  • механические изделия;
  • электронные изделия.

Потенциометры с однополярным питанием

Такие изделия оснащены специальными реостатными ключами. Все виды резисторов в этом случае необходимо использовать только пассивного типа. Двигающиеся контакты устройства обладают большой проводимостью электрического тока. Значение полосы пропускания электронного ключа напрямую зависит от частоты среза. Этот параметр обычно не превышает 2100 килогерц. Подобные характеристики потенциометров очень часто применяются для регулировки тембра.

Потенциометры с двухполярным питанием

Изделия с двухполярным питанием применяются только в вычислительных изделиях. Главной особенностью подобных устройств является большой уровень максимального сопротивления. Электронные ключи для такой аппаратуры необходимо использовать лишь реостатного типа. Внизу изделия находится несколько выводов для подсоединения к электрической схеме. Настройка устройства проводится на специальной мостовой аппаратуре. Значение разброса сопротивления не превышает двух процентов. Отрицательное электрическое напряжение устройства имеет значение не более 4 вольт.

Механические потенциометры

Механическим потенциометром называется изделие для регулирования электрического тока, которое оборудовано специальным поворотным контроллером. Внизу устройства находятся несколько выводов. Электронные ключи нужно использовать резистивного типа. А также в таких изделиях предусмотрена функция программной выборки. Максимальное значение сквозного сопротивления не превышает 4 Ом. Такие изделия не оснащены функцией калибровки. Отрицательное электрическое напряжение подобного устройства составляет около 4 вольт, а линейные искажения не превышают 92 децибела.

Мощные резисторы необходимо использовать только открытого типа. Механические потенциометры оптимально подходят для реверсивного управления. Многие изделия не поддерживают реостатный режим. Стоит заметить, что подобные устройства не применяются для регулирования коэффициента усиления. Максимальное положительное электрическое напряжение имеет значение около 2,5 вольта. Частота среза очень редко превышает 2500 килогерц. Значение полосы пропускания имеет прямую зависимость от характеристик электронного ключа. Такие изделия не принято использовать в вычислительных приборах.

Электронные потенциометры

Электронным потенциометром называется изделие, необходимое для регулирования электрического тока. Многие модели оборудованы несколькими электронными ключами. Мощные резисторы стоит применять лишь резистивного типа. Чтобы реверсивно управлять аппаратурой, можно использовать практически любую модель изделия. Эти устройства могут выдержать до 12 непрерывных циклов управления. Практически все модели обладают функцией программной выборки. Стоит заметить, что электронные изделия можно использовать для регулирования громкости. Значение линейных искажений подобных устройств не превышает 85 децибел.

Электронные изделия довольно часто применяются в вычислительной аппаратуре, потому что частота среза у них не более 3100 килогерц. Значение полосы пропускания электронного ключа составляет около 4 мк, но он во многом зависит от изготовителя. Многие модели таких потенциометров используются для качественной настройки различных фильтров. Стоит отметить, что это устройство не может осуществлять регулировку коэффициента усиления.

Измерение напряжения

0-5 Вольт

Простой пример, как измерить напряжение на аналоговом пине и перевести его в Вольты. Плата питается от 5V.

Таким образом переменная voltage получает значение в Вольтах, от 0 до 5. Чуть позже мы поговорим о более точных измерениях при помощи некоторых хаков.

Почему мы делим на 1024, а не на 1023 , ведь максимальное значение измерения с АЦП составляет 1023? Ответ можно найти в даташите:

АЦП при преобразовании отнимает один бит, т.е. 5.0 Вольт он в принципе может измерить только как 4.995, что и получится по формуле выше: 1023 * 5 / 1024 == 4.995.. . Таким образом делить нужно на 1024, если кто-то у вас спросит почему – отправьте его читать даташит.

Сильно больше 5 Вольт

Для измерения постоянного напряжения больше 5 Вольт нужно использовать делитель напряжения на резисторах (Википедия). Схема подключения, при которой плата питается от 12V в пин Vin и может измерять напряжение источника (например, аккумулятора):

Код для перевода значения с analogRead в вольты с учётом делителя напряжения:

Как выбрать/рассчитать делитель напряжения?

  • Согласно даташиту на ATmega, сумма R1 + R2 не рекомендуется больше 10 кОм для достижения наибольшей точности измерения. В то же время через делитель на 10 кОм будет течь ощутимый ток, что критично для автономных устройств (читай ниже). Если девайс работает от сети или от аккумулятора, но МК не используется в режиме сна – ставим делитель 10 кОм и не задумываемся. Также рекомендуется поставить конденсатор между GND и аналоговым пином для уменьшения помех.
  • Если девайс работает от аккумулятора и микроконтроллер “спит”: пусть аккумулятор 12V, тогда через 10 кОм делитель пойдёт ток 1.2 мА, согласно закону Ома. Сам микроконтроллер в режиме сна потребляет

1 мкА, что в тысячу раз меньше! На самом деле можно взять делитель с гораздо бОльшим суммарным сопротивлением (но не больше 20 МОм, внутреннего сопротивления самого АЦП), но обязательно поставить конденсатор на

0.1 мкФ между аналоговым пином и GND (вот здесь проводили эксперимент). Таким образом например при при R1+R2 = 10 МОм (не забыть про конденсатор) ток через делитель будет 1.2 мкА, что уже гораздо лучше!
Коэффициент делителя равен (R1 + R2) / R2 . Коэффициент должен быть таким, чтобы при делении на него измеряемого напряжения не получилось больше 5 Вольт. У меня в примере (10 + 4.7) / 4.7

3.13 . Я хочу измерять литиевый аккумулятор с максимальным напряжением 12.8 Вольт. 12.8 / 3.13

4 Вольта – отлично. Например для измерения 36 Вольт я бы взял делитель с плечами 100к и 10к.

  • Можно воспользоваться онлайн-калькулятором.

Сильно меньше 5 Вольт

Для более точных измерений маленького напряжения можно подключить пин AREF к источнику низкого опорного напряжения (об этом было выше), чтобы “сузить” диапазон работы АЦП. Источник может быть как внешний, так и внутренний, например изменив опорное на внутреннее 1.1V ( analogReference(INTERNAL) ) можно измерять напряжение от 0 до 1.1 Вольта с точностью 1.1/1024

Настройка преобразователя частоты с программированием параметров

При нажатии клавиши Prog высвечивается группа значений. Стрелками задаем необходимый номер, нажимаем на ВВОД, появляется номер параметра. Это значение меняем клавишами, возвращаемся к группе параметров клавишей MODE.

Для подтверждения выбора значения – клавиша Prog, на дисплее появляется значение. Изменяем его клавишами, подтверждаем клавишей Ввод.

После сохранения параметра высвечивается надпись End ненадолго. При возникновении ошибки появляется Err, означает недопустимые параметры, неправильное действие (многие параметры программируются при выключенном приводе).

В итоге составлен алгоритм начального запуска и первой настройки преобразователя частоты:

  • Контроль частотного преобразователя мотора и питания.
  • Первый запуск и сброс значений параметров на заводские до 50 герц.
  • Настройка опций управления.
  • Настройка источника задающей частоты.
  • Окончательные настройки.

В инструкции имеются ответы на вопросы, возникающие в процессе настройки.

Если управление частотником происходит вручную, а не контроллером, то возникает неисправность резистора переменной величины (потенциометра). Если сломался наружный прибор, то переключаются на выносную панель. Если неисправен прибор на выносной панели и нет наружного, то его устанавливают самостоятельно.

analogRead()

Для того, чтобы считать сигнал от датчика в программу, нам понадобится функция analogRead(). Она принимает номер порта в качестве аргумента. А пины, которые можно использовать для аналогового входа помечены на плате ардуино как ANALOG IN.

Напряжение поданное на аналоговый вход, обычно от 0 до 5 вольт будет преобразовано в значение от 0 до 1023, это 1024 шага с разрешением 0.0049 Вольт. Разброс напряжение и шаг может быть изменен функцией analogReference().

Считывание значение с аналогового входа занимает около 100 микросекунд (0.0001 сек), Значит, максимальная частота считывания приблизительно 10,000 раз в секунду.

Потенциометр Ардуино — что это такое

Переменный резистор в электрической цепи с платой Arduino Uno или Nano используется в качестве делителя напряжения. На выводы потенциометра подается напряжение (5V и GND), а средний вывод радиоэлемента является подвижным контактом. При вращении ручки потенциометра, напряжение сигнала на среднем выводе будет меняться от своего максимального значения (5 Вольт) до нуля.

Подстроечный и переменный резистор (потенциометр)

Потенциометры бывают разных типов. По характеру изменения сопротивления они делятся на: линейные (сопротивление меняется в прямой зависимости), логарифмические и экспоненциальные (сопротивление меняется с разной интенсивностью). По типу корпуса бывают: однооборотные, многооборотные, ползунковые и т.д. По назначению: переменные и подстроечные резисторы.

Глава 3 — Цепи постоянного тока

ЧАСТИ И МАТЕРИАЛЫ

  • 6-вольтовая батарея
  • Потенциометр, однократный поворот, 5 кОм, линейный конус (Каталог Radio Shack № 271-1714)
  • Маленький «хобби» мотор, постоянный магнит (каталог Radio Shack № 273-223 или эквивалент)

Для этого эксперимента вам понадобится относительно низкоценный потенциометр, конечно, не более 5 кОм.

ПЕРЕКРЕСТНЫЕ ССЫЛКИ

Уроки в электрических цепях, том 1, глава 2: «Закон Ома»

ЦЕЛИ ОБУЧЕНИЯ

  • Использование реостата
  • Подключение потенциометра в качестве реостата
  • Простое управление скоростью двигателя
  • Использование вольтметра над амперметром для проверки непрерывной цепи

СХЕМАТИЧЕСКАЯ СХЕМА

ИЛЛЮСТРАЦИИ

ИНСТРУКЦИИ ПО ПОДКЛЮЧЕНИЮ ПОТЕНЦИОМЕТРОВ

Потенциометры находят свое самое сложное применение в качестве делителей напряжения, где положение вала определяет удельное отношение деления напряжения. Однако есть приложения, в которых нам не обязательно нужен переменный делитель напряжения, а просто переменный резистор: двухконтактное устройство. Технически переменный резистор известен как реостат, но потенциометры могут быть созданы для того, чтобы функционировать как реостаты довольно легко.

В своей простейшей конфигурации потенциометр можно использовать в качестве реостата, просто используя клемму стеклоочистителя и один из других клемм, третий терминал остается несвязанным и неиспользуемым:

Перемещение потенциометра в направлении, при котором стеклоочиститель находится ближе всего к другому используемому терминалу, приводит к более низкому сопротивлению. Направление движения, необходимое для увеличения или уменьшения сопротивления, может быть изменено с использованием другого набора терминалов:

Будьте осторожны, однако, что вы не используете два внешних контакта, так как это не приведет к изменению сопротивления при повороте вала потенциометра. Другими словами, он больше не будет функционировать как переменное сопротивление:

Постройте схему, как показано на схеме и иллюстрации, используя только два контакта на потенциометре и посмотрите, как можно управлять скоростью двигателя, регулируя положение вала. Проведите эксперимент с различными клеммами на потенциометре, отметив изменения в управлении скоростью двигателя. Если ваш потенциометр имеет высокое сопротивление (как измерено между двумя внешними клеммами), двигатель может вообще не двигаться, пока стеклоочиститель не окажется очень близко к подключенному внешнему терминалу.

Как вы можете видеть, скорость двигателя может быть изменена с помощью реостата с последовательным подключением для изменения общего сопротивления цепи и ограничения общего тока. Однако этот простой способ управления скоростью двигателя неэффективен, так как это приводит к тому, что реостат рассеивается (теряется) в значительном количестве энергии. Более эффективное средство управления двигателем полагается на быстрое «импульсное» питание двигателя, используя высокоскоростное коммутационное устройство, такое как транзистор . Подобный метод управления мощностью используется в бытовых ламповых «диммерных» переключателях. К сожалению, эти методы слишком сложны, чтобы исследовать на этом этапе экспериментов.

Когда в качестве реостата используется потенциометр, «неиспользуемый» терминал часто подключается к терминалу стеклоочистителя, например:

Поначалу это кажется бессмысленным, поскольку оно не влияет на контроль сопротивления. Вы можете проверить этот факт самостоятельно, вставив еще один провод в свою схему и сравнив поведение двигателя до и после изменения:

Если потенциометр находится в хорошем рабочем состоянии, этот дополнительный провод не имеет никакого значения. Однако, если стеклоочиститель когда-либо теряет контакт с резистивной полосой внутри потенциометра, это соединение гарантирует, что цепь не будет полностью открыта: что по-прежнему будет резистивный путь тока через двигатель. В некоторых приложениях это может быть важным. Старые потенциометры имеют тенденцию страдать от прерывистых потерь контакта между стеклоочистителем и резистивной полосой, и если схема не может переносить полную потерю непрерывности (бесконечного сопротивления), созданной этим условием, этот «дополнительный» провод обеспечивает меру защиты, поддерживая непрерывность цепи.

Вы можете имитировать такой «отказ» контакта стеклоочистителя, отсоединив среднюю клемму потенциометра от клеммной колодки, измерив напряжение на двигателе, чтобы убедиться, что все еще есть мощность, но небольшая:

Было бы справедливо измерять ток цепи вместо напряжения двигателя, чтобы проверить завершенную схему, но это более безопасный метод, поскольку он не включает разрыв цепи для вставки амперметра в ряд. Всякий раз, когда используется амперметр, существует риск вызвать короткое замыкание, подключив его к существенному источнику напряжения, что может привести к повреждению инструмента или травме. Вольтметрам не хватает этого неотъемлемого риска для безопасности, и поэтому всякий раз, когда измерение напряжения может быть произведено вместо текущего измерения для проверки того же, это более разумный выбор.