Что нужно знать о плазменной резке металла

Что нужно знать о плазменной резке металла

Что такое плазменная резка? Это обработка металлических изделий, где резцом служит струя плазмы. На чем основана технология, виды оборудования — далее.

Резка металла — технологический процесс разделения монолитной детали на отдельные части. Операция выполняется механическим способом (рубка, распиливание), гидроабразивным (суспензия из воды и абразивного материала) или термическим (нагрев).

Последний вид — это газокислородная, лазерная и плазменная резка металла.

Что задействовано при резке плазменной струей

Оборудование для плазменной резки металла включает в себя:

  • Источник питания. Чтобы плазменная дуга в процессе резки работала стабильно и не разбрызгивала металл, источник питания преобразует переменный ток в постоянный, а также регулирует его силу.
  • Плазмотрон. Генератор плазмы состоит из электрода, изолированного от него сопла и механизма, которое закручивает плазмообразующий газ. Для качественной работы плазмотрону нужен защитный кожух.
  • Систему розжига дуги. Ее назначение – образовывать искру в плазмотроне, которая нужна для поджига плазменной дуги.

Описание процесса

Что такое плазменная резка? Технология плазменной резки металла основывается на принципе локального теплового источника значительной мощности, который способен, подобно сварке, с большой скоростью расплавить материал в зоне обработки. В соответствии с этим различают следующие разновидности способа:

  • Плазменно-воздушная/кислородная резка, где режим плазмообразования достигается вследствие ионизации воздуха, который с большой скоростью нагревается до нужной температуры.
  • Плазменно-дуговая резка, где образование плазмы производит за счет дугового разряда большой мощности.
  • Разрезание непрофилированным электродом, в основе которой положен принцип электрического взаимодействия между заготовкой и проволокой из высокостойких к эрозии материалов – меди, латуни.
  • Газоплазменная технология, аппараты которой формируют плазму в потоке инертных газов высокой плотности (например, аргона).

Каждый из вышеперечисленных способов разделения металла (в основном – листового) имеет свои преимущества и ограничения. Общим является одно – отсутствие потребности в специализированной оснастке, возможность режима разделения по сколь угодно сложному контуру и наличие технологических отходов в виде грата расплавленных, а затем застывших частиц, которые впоследствии потребуется удалять. Поэтому рассматриваемый в данной статье процесс (в частности, даже ручными аппаратами) наиболее целесообразен и эффективен главным образом в условиях мелкосерийного и единичного производства, когда число резов за смену не превышает 2000 — 4000.

Разделение непрофилированными электродами

Источником тепла для образования плазмы в данном случае является искровой разряд сравнительно небольшой скважности, который формируется при пробое межэлектродного промежутка между проволочным электродом и разрезаемым изделием.

Принцип работы плазмореза такого типа происходит так.
Латунная или медная проволока с небольшим (не более 1 мм) поперечным сечением перематываясь с одной катушки на другую, передвигается вдоль линии реза. При пробое межэлектродного промежутка (ручным или механизированным способом) в плазморезе возбуждается искровой разряд, который выполняет локальное расплавление. В момент накапливания энергии для следующего импульса специальное устройство перемещает проволоку на определённое расстояние, расчёт величины которого выполняется в соответствии с теплофизическими характеристиками заготовки и её толщиной. Движение проволоки в аппарате исключает опасность сварки и обеспечивает более равномерный износ непрофилированного электрода.

Производительность и скорость с применением такого плазмореза невелика. Это объясняется как малой мощностью источника, так и небольшим диаметром проволочного электрода, из-за чего в зону обработки невозможно ввести большую энергию: проволочка просто испарится. Несомненными преимуществами способа считаются малые потери при резке, исключение сварки отдельных фрагментов, а также хорошее качество зоны разделения листового материала. Поэтому эти аппараты используются при выполнении разделительных работ повышенной точности, для обработки тонких заготовок, и при сложной конфигурации поверхности их раздела.

Принцип резки плазмой

Резка с использованием кислорода или воздуха

Плазморезы, работающие по данному принципу, используют энергию сгорания кислорода (чистого или находящегося в составе воздуха). Плазменная резка происходит в силу следующих причин:

    • Высокой температуры, которая достигается при сгорании вещества в воздушно-кислородной среде (расчёт, однако, показывает, что температура не должна превышать температуры плавления, иначе металл плавится, а не разделяется);
    • При работе плазмореза данной конструкции происходит выделение дополнительного тепла, что способствует стабилизации процесса;
    • Высокой скорости прокачки газа в устройстве, вследствие чего уменьшается зона его воздействия на материал, исключается самопроизвольная сварка, и улучшается качество поверхности раздела;
    • Газовый поток во время работы аппарата по специальной программе обеспечивает эффективное удаление частиц расплава из зоны обработки.

Работа плазморезов с применением продольного газового потока выгодно отличается высокой удельной мощностью, и поэтому применяется при программах разделения листового металла значительной толщины (до 60…80 мм), труб, других профилей металлопроката. Вместе с тем имеется и ряд ограничений:

  • Во время обработки на поверхности всегда происходит интенсивное окислообразование. Расчёт данного процесса сложен, но важен, поскольку иначе качество ухудшается из-за появления толстой оксидной плёнки (как при сварке). Поэтому аппараты, реализующие данный способ резки, снабжаются узлами подачи флюсов – веществ, связывающих оксиды в легкоплавкие вещества, которые далее удаляются. Состав флюсов определяется расчётом. В результате исключается опасность сварки отдельных частиц на разрезаемом контуре, что предоставляет эксплуатационникам дополнительные преимущества. Плазменная резка алюминия, меди и других сплавов, обладающих высокой теплопроводностью, без флюсов вообще невозможна.
  • Повышения точности действия плазмореза можно достичь только за счёт увеличения скорости потока газа, поэтому такие аппараты отличаются повышенным уровнем шума. Расчёт шумозащитных экранов под такие плазморезы не отличается особой точностью
  • Технология разделения с использованием плазмы в горючих газах по параметрам своей фактической производительности аппаратов и скорости реза является малоэффективной для обработки нержавеющей стали, отличающейся высокой температурой плавления.
  • Плазморезы такого типа требуют повышенных организационных мер по своей пожаробезопасности.

Тем не менее, простота схемы устройств, а также доступная автоматизация плазменной резки при работе таких аппаратов обеспечивают относительно небольшую удельную мощность оборудования. При отсутствии высоких требований к качеству обработки плазморезы газовой резки выгодно отличаются небольшой ценой, а потому получили достаточное распространение. Известны, например, модели ручных и переносных плазморезов рассмотренного типа.

Разделение в струе инертного газа

Плазменная резка нержавеющей стали чаще всего выполняется именно этим способом. Если толщина листового металла не превышает 50 мм, применяют азот, а при большей толщине – аргон. Принцип выполнения операции подобен сварке под слоем флюса. Он заключается в том, что зона реза локализуется потоком инертного газа, который препятствует возгоранию металла, и тем самым увеличивает производительность устройства. Особенно чистый рез достигается при введении в основной газ до 15…20% водорода. При расчёте экономической целесообразности используется и автоматическая плазменная резка.

Аппараты данного типа управляются по параметру скорости. С её увеличением уменьшается толщина зоны разделения, и возрастает температура. Рез получается более чистым, а непрерывный подогрев кромки теплом отработанной плазмы стабилизирует процесс во времени, и исключает вероятность образования узлов сварки, поскольку поддержание температуры плазмы на необходимом уровне происходит автоматически. Поэтому программы управления такими процессами отличаются простотой и надёжностью.

Плазменно-дуговая резка требует тщательных расчётов. Расчёт её параметров сводится к определению скорости перемещения инструментальной головки станка и регулированию значения температуры в зоне реза, чтобы исключить возможную сварку. Вместо расчётов некоторые производители таких аппаратов приводят в руководствах пользователя практические номограммы. Они позволяют по толщине исходной заготовки, коэффициенту её теплопроводности и необходимой производительности устройства выбрать длину столба плазмы, а также количество подаваемого инертного газа.

Схема работы воздушно-плазменной резки

Разделение дуговым разрядом

Метод считается наиболее прогрессивным и универсальным. Отличительными особенностями плазморезов данного типа являются:

  • Упрощение устройства инструментальной головки, поскольку здесь нет необходимости включения дуги в общую электрическую цепь аппарата.
  • Универсальность метода, поскольку финишная конфигурация линии или поверхности реза определяется только формой электрода по результатам расчёта (он может быть медным, из тугоплавких металлов – например, вольфрама, либо графитовым).
  • Высокие производительность и скорость обработки вследствие того, что объёмная плотность тепловой мощности дуги – наивысшая из возможных.
  • Сравнительно небольшой стоимостью аппаратов, поскольку в качестве источника формирования дугового разряда применяются обычные преобразователи, используемые для сварки.
  • Хорошим качеством кромки, которая, например, для последующей сварки не требует дополнительной обработки
  • Процесс с использованием тепла электрической дуги легко управляется по программе путём изменения тока дугового разряда и производительности прокачки рабочей диэлектрической среды через зону обработки. Известные программы обеспечивают хорошую регулировку скорости резки, межэлектродного зазора и качества готовой кромки листового металла.

Процесс плазменной резки пригоден для реализации относительно всех токопроводящих материалов, независимо от их теплофизических показателей. Аппараты известных моделей удобны и просты в управлении, хотя и требуют дополнительной защиты от шума.

4 Достоинства и недостатки плазменной резки

Сам принцип работы плазменной резки обуславливает преимущества данной технологии перед газовыми методиками обработки неметаллических и металлических изделий. К главным достоинствам использования плазменного оборудования можно отнести следующие факты:

  • универсальность технологии: практически все известные материалы можно резать при помощи плазменной дуги, начиная от чугуна и меди и заканчивая алюминиевыми и стальными холоднокатаными листами;
  • высокая скорость операции для металлов средней и малой толщины;
  • резы получаются по-настоящему качественными и высокоточными, что нередко дает возможность не производить дополнительную механическую обработку изделий;
  • минимальное загрязнение воздуха;
  • отсутствие необходимости выполнять предварительный прогрев металла для его резки, что позволяет уменьшать (и существенно) время прожига материала;
  • высокая безопасность выполнения работ, обусловленная тем, что для резки не нужны баллоны с газом, являющиеся потенциально взрывоопасными.

Стоит отметить, что по некоторым показателям газовые технологии признаются более целесообразными, нежели плазменная резка. К недостаткам последней обычно относят:

  • сложность конструкции плазмотрона и его дороговизну: естественно, это увеличивает себестоимость выполнения каждой операции;
  • относительно малую толщину реза (до 10 сантиметров);
  • высокий уровень шума в процессе обработки, который возникает из-за того, что из плазмотрона газ вылетает на околозвуковой скорости;
  • необходимость высококачественного и максимально грамотного техобслуживания агрегата;
  • повышенный уровень выделения вредных веществ при применении в качестве плазмообразующего состава азота;
  • невозможность подключения к одному плазмотрону двух резаков для ручной обработки металлов.

Еще один минус описанного в статье вида обработки заключается в том, что отклонение от перпендикулярности реза допускается не более, чем на угол от 10 до 50 градусов (конкретная величина угла зависит от толщины изделия). Если увеличить рекомендованный показатель, отмечается значительное расширение режущей области, а это становится причиной необходимости частой замены используемых материалов.

Теперь вы знаете, что такое плазменная резка, и прекрасно ориентируетесь во всех ее особенностях.

4. Плазменная резка чугуна

Резка чугуна плазмой – самая надёжная и эффективная технология на сегодняшний день. Данный способ экономичный, быстрый и удобный, и по этим параметрам он превосходит резку болгаркой и газом. Плазменная резка чугуна – наиболее предпочтительный вариант для тяжёлой промышленности, например, если на территории предприятия скопился лом чугуна, который нуждается в демонтаже и перевозке. Плазма обеспечивает глубинные разрезы в металле, и это делает её незаменимой для решения наиболее трудоёмких задач в сфере резки металла.

Что такое кислородная резка?

При кислородной резке пламя кислородного-топливной смеси предварительно нагревает сталь до температуры воспламенения.

Кислородная струя направляется на металл, создавая химическую реакцию с образованием оксида железа, также известного как шлак. Мощный поток кислорода удаляет шлак из пропила.

При использовании кислородных горелок качество резки, время предварительного нагрева и толщина металла зависят от типа топливного газа. В процессе задействуют один из четырех топливных газов в сочетании с кислородом: ацетилен, пропан, пропилен и природный газ.

Для чего используется резка кислородом?

Ручная кислородная резка распространена в проектах с малыми объемами, когда использование дорогостоящих агрегатов экономически не обосновано.
Например, подготовка деталей для последующей ковки и штамповки, в литейных цехах, резка труб.
Кислородная резка эффективна при работе с толстой сталью и черными металлами.

Существуют кислородно-топливные горелки, которые можно использовать для нескольких процессов, таких как резка, сварка и пайка.

Преимущества кислородной резки:

  • Неоспоримый плюс этого процесса — низкие первоначальные затраты и портативность компонентов по сравнению с аппаратами плазменной резки.
  • Способность быстро резать более толстую сталь, в добавок, универсальность системы.

Аппарат плазменной резки металла

Конструктивно система плазменной резки представлена двумя ключевыми элементами: источником электроэнергии и плазмотроном. Первый узел отвечает за создание и поддержку электрического потока. Плазмотрон необходим для непосредственного формирования факела низкотемпературной плазмы. Его составными деталями являются: сопло, электрод, камера для образования плазмы, форсунка для создания струи плазмы и кабель-шланг. Различают два типа станков:

  • инверторные – компактные установки плазменной резки с небольшим весом и энергопотреблением. Способны создавать стойкую электрическую дугу, обеспечивающую высокую производительность и качество работ. Характеризуются чувствительностью к перепадам напряжения;
  • трансформаторные – долговечные и надежные, но габаритные агрегаты, применяемые для ручных и автоматизированных процессов разрезки. Главные достоинства: высокая продолжительность непрерывной работы, раскрой материалов большей толщины и нечувствительность к скачкам напряжения.

Чтобы правильно выбрать аппарат для плазменной резки металлов, нужно отталкиваться от условий эксплуатации и планируемого спектра задач. Первым делом следует обратить внимание на такие критерии, как:

  • перечень материалов – желательно приобретать станки, предназначенные для обработки разных металлов;
  • допустимая толщина резки – как правило, этот показатель указывается для обычной стали, а по нему уже определяются значения для остальных металлов;
  • состав плазмообразующей смеси – станки, работающие на инертных газах, воздухе и кислороде, позволяют подобрать оптимальный режим раскроя для любых материалов.

Плазменная резка для начинающих.

Плазменная резка металлов для начинающих.

Уважаемые покупатели, в этой статье мы хотим вам рассказать что такое плазменная резка металлов, показать ее основные преимущества, рассказать об устройстве плазменных аппаратов и как их использовать, а теперь обо всем этом по порядку.

Иногда наши покупатели приобретая аппарат плазменной резки с удивлением узнают, что для его работы необходим компрессор. Компрессор необходим для того, чтобы выдувать металл который вы режете. Без компрессора резать плазмой невозможно. Компрессор подключается к аппарату, а к аппарату подключается плазматрон (плазменная горелка), так вот, когда возникает дежурная дуга между катодом и соплом, воздух эту дугу выдувает наружу, где дуга переходит в основную дугу при соприкосновении с металлом; далее происходит процесс плавления металла и выдувания его жидкой части из зоны расплава. При выборе компрессора стоит обратить особое внимание на его качество и на его параметры. Корректная работа аппарата плазменной резки возможно только в сочетании с хорошим компрессором. Мы рекомендуем использовать компрессоры способные выдавать 5-6 атмосфер.

Еще одна немаловажная деталь, на которую мы хотим обратить ваше внимание. В компрессоре должен стоять фильтр воздуха, он может быть встроен в компрессор изначально, а может подключаться отдельно. Воздух, который будет проходить через аппарат плазменной резки и выходить из плазматрона, должен быть чистым, в него не должны попадать никакие посторонние предметы и вещества. Недопустимо попадание паров и частиц масла, мельчайшей частицы металлической стружки, пыль и грязь. Особенно это важно, если вы планируете использовать плазму на пыльных производствах, в гаражах, цехах с бетонными полами и т.д. Чем чище воздух – тем лучше рез!

Если вы будете соблюдать эти условия, аппарат будет работать корректно и без сбоев.

Плазма или газорезка?

Мы не будем говорить о том, что газорезка хуже чем плазменная резка. У газорезки есть ряд преимуществ перед плазмой, например при резе металлолома в больших количествах вам не справиться с этой задачей если использовать плазменную резку. Плазменная резка экономически целесообразна при толщине металла до 50 мм, при большей толщине преимущество переходит к кислородной резке. Но качество и скорость раскроя всегда на стороне плазменной резки.

Для газорезки нужен газ, для плазмы нужно электричество. Выделим два основных преимущества плазмы: первое – вам не нужен газ (ацетилен) вы не связываетесь с взрывоопасными газами, второе — вы можете резать различные типы металлов (сталь, нержавейка, медь, алюминий и пр.)

Таким образом кому-то необходима газорезка, кому-то подойдет плазма, выбор за вами.

Как правильно выбрать аппарат плазменной резки?

Здесь все очень просто. Чем мощнее плазменный аппарат, тем толще металл он может резать. Если вы планируете резать разные толщины, вам лучше выбрать мощные аппарат, если вы будете резать тонкие металлы, вам нет необходимости покупать мощные аппарат, достаточно приобрести сорока амперный аппарат. Обратите внимание на такое понятие, как качество реза. Рез может быть «грязный» и «чистый». Грязный рез – это когда вам нужно просто отрезать кусок металла и для вас не имеет значение какой срез будет, аккуратный или нет. Чистый рез — это максимально ровно отрезанный металл. Как правило, производители указывают в параметрах грязный рез. Чтобы понять чистый рез, вам нужно отнять порядка 25% от указанной толщины. Так например если производитель указал 12 мм – значит чистый рез составит 8-9 мм. Не думайте, что производители вас обманывают, это всемирная практика указать в параметрах грязный рез, а не чистый. Этот параметр показывает максимальную возможность аппарата, а вы уже сами выбираете как вам резать металл, по “грязному” или по “чистому”.

Кроме того, перед покупкой желательно понять как часто вы будете включать аппарат плазменной резки. Обратите внимание на ПВ приобретаемого аппарата. Если ПВ аппарата 60% — значит в 10 минутном цикле вы можете резать 6 минут, а 4 минуты аппарат будет отдыхать, если ПВ 100% — значит можно не отрываться от работы, аппарат будет работать постоянно.

Расходные части.

Покупая аппарат плазменной резки, мы рекомендуем вам узнать у поставщика как обстоят дела с расходкой для плазменной горелки. Практически все производители вместе с аппаратом кладут расходные части, вы можете приступать к резке незамедлительно, но расходка горит, независимо от производителя. И когда встает вопрос о замене, выясняется, что там где аппарат покупался – “расходки” нет. Мы часто сталкиваемся с такими случаями, когда помогаем людям подобрать расходку, и стоит признать, что не всегда это получается. Расходка не всегда стыкуется. Так, например, расходка для аппаратов китайского происхождения не подходит к европейским товарам или американским. Кроме того, нет возможности поменять плазматрон (плазменную горелку) – разные разъемы. В нашем интернет-магазине продаются аппараты плазменной резки произведенные в Китае, все расходные части для горелок CUT всегда в наличии и как показывает практика, китайская расходка подходит практически на все аппараты сделанные в Китае.

Скорость с которой резать металл.

Этот вопрос нам часто задают покупатели. Определенного ответа на него нет, вы поймете, как быстро вам надо будет вести плазматрон по металлу только в процессе обучения, приноровиться очень просто. Все зависит от толщины металла и амперажности, которую вы выставите. Когда вы приступите к резу, вы сразу увидите — если вы ведете плазматрон очень быстро (в таком случае металл не будет прорезаться полностью) если очень медленно (в этом случае вы просто будете расходовать воздух и электроэнергию). Перед тем как резать нужные вам заготовки или отрезки, мы рекомендуем потренироваться на ненужных обрезках, чтобы выбрать оптимальный режим и скорость реза.

Еще один совет, когда вы включите аппарат – поставьте ток на максимум, а во время реза уменьшайте его, пока не поймете, что этого тока достаточно для реза вашей толщины металла. Начинайте с больших токов, затем идите на понижение.

И ещё, не старайтесь ставить максимальный ток, чтобы отрезать побыстрее, так как чем больше ток, тем быстрее выходит из строя расходка; не делайте слишком частые поджиги, поскольку именно в момент поджига происходит интенсивное «выветривание» тугоплавкой вставки на катоде и преждевременный выход его из строя, т.е. нажали на кнопку и режьте непрерывно. Если по условиям работы вам необходимо делать короткие резы, например резать сетку – приготовьтесь к частой замене расходки.

Как все работает.

Установки плазменной резки имеют напряжение холостого хода 250-300 В.

При нажатии на кнопку подаётся сжатый воздух и одновременно между катодом и соплом во внутренней камере плазмотрона прикладывается это напряжение холостого хода, но чтобы пробить этот промежуток и зажечь плазму, необходима поджигающая искра – эту функцию поджига выполняет осциллятор (напряжение поджига порядка 5-10 кВ). Как только дуга зажглась (и дуга в этот момент называется дежурной) воздух выдувает плазму наружу. Ток дежурной дуги как правило в мощных аппаратах ограничен внутри мощным сопротивлением для экономии расходки, для реза не предназначен; дежурная дуга горит 2-3 сек. Если в течение этого времени дуга не коснулась металла или металл по каким-то причинам не соединён с «+» установки (например, обрыв обратного кабеля), то дуга гаснет. Если же всё прошло нормально, то дежурная дуга переходит в основную дугу, блок осциллятора отключается. Далее происходит плавление металла дугой и одновременное выдувание расплавленного материала из расплава. Горение основной дуги происходит между тугоплавкой вставкой из гафния, впрессованной в торец катода и материалом изделия. Наибольшее разрушение этой вставки происходит именно в момент поджига, поэтому лучше стараться избегать слишком частых включений в целях экономии расходки.

Выбрать аппарат плазменной резки можно здесь.

Для наглядности, мы провели несколько тестов. Аппарат Сварог CUT 100 разрезал металл толщиной 10 мм. с увеличением до 35 мм. Ток резки был выставлен 90 Ампер.

Аппарат Сварог CUT 40 разрезал пластину толщиной 4 мм. Ток резки 20 Ампер.

Плазмообразующие газы для раскроя различных металлов

Для плазменной резки металлов могут использоваться как активные, так и неактивные газы. Их выбор осуществляется в зависимости от разновидности металла и его толщины:

  • Азотоводородная смесь предназначена для меди, алюминия и сплавов на их основе. Максимально возможная толщина – 100 мм. Неприменима для титана и всех марок сталей.
  • Азот с аргоном используется в основном для плазменной резки высоколегированных марок сталей, толщина которых не превышает 50 мм, но не рекомендована смесь для черных металлов, титана, меди и алюминия.
  • Азот. С его помощью выполняется раскрой сталей с низким содержанием углерода и легирующих элементов толщиной до 30 мм, высоколегированных – до 75 мм, меди и алюминия – до 20 мм, латуни – до 90 мм, титана неограниченной толщины.
  • Сжатый воздух. Оптимально подходит для воздушно-плазменной резки черных металлов и меди толщиной до 60 мм, а также алюминия – до 70 мм. Не предназначен для титана.
  • Смесь аргона с водородом – раскрой сплавов на основе алюминия и меди, сталей с большим содержанием легирующих элементов толщиной свыше 100 мм. Не рекомендуется использовать для низкоуглеродистых, углеродистых, низколегированных марок сталей и титана.

Но недостаточно просто подключить баллон с необходимым плазмообразующим газом, так как от его состава зависят многие технические характеристики оборудования:

  • мощность и внешние (статистические и динамические) характеристики источника питания;
  • циклограмма аппарата;
  • способ крепления катода в плазмотроне, а также материал, из которого он изготовлен;
  • тип конструкции механизма охлаждения для сопла плазмотрона.

Советы по плазменной резке цветных и легированных металлов:

  • При ручном раскрое высоколегированных марок сталей в качестве плазмообразующего газа рекомендуется использовать азот.
  • Для обеспечения стабильного горения дуги при ручном резании алюминия аргоноводородной смесью в ней должно содержаться не более 20 % водорода.
  • Латунь лучше всего режется азотом и азотоводородной смесью, а также характеризуется более высокой скоростью раскроя.
  • Медь после разделительного резания в обязательном порядке подвергается зачистке по плоскости реза на глубину 1-1,5 мм. К латуни данное требование не относится.

Области применения плазменной резки

Благодаря высокой производительности, универсальности и доступной стоимости плазменная резка металлов пользуется огромным спросом во многих отраслях промышленности:

  • металлообрабатывающие предприятия и компании;
  • авиа-, судо- и автомобилестроение;
  • строительная промышленность;
  • предприятия тяжелого машиностроения;
  • металлургические заводы;
  • изготовление металлоконструкций.

Все сферы использования перечислить просто невозможно – ручные аппараты и автоматические машины для плазменной резки металлов можно встретить практически повсеместно. Их применяют как крупные заводы по изготовлению металлоконструкций, так и небольшие фирмы, специализирующиеся на художественной ковке и обработке деталей.

Особое место среди данного оборудования занимают машины для плазменной резки металлов с ЧПУ – они сводят к минимуму человеческий фактор, значительно повышают производительность. Но основным их преимуществом является сокращение расхода металлопроката благодаря возможности создания специальных программ. Высококвалифицированные технологи разрабатывают карты раскроя, представляющие собой виртуальный лист металла определенных размеров, на котором они максимально плотно укладывают заготовки с учетом ширины реза и многих других параметров процесса с целью более рационального использования металлопроката.

Тонкости процесса раскроя металла

Для получения качественной заготовки в процессе плазменной резки требуется поддержание постоянного расстояния между соплом и разрезаемым металлом – как правило, в пределах 3-15 мм. В противном случае возможно увеличение ширины реза, зоны термического влияния, несоответствие заготовки заданным размерам.

Ток в процессе работы должен быть минимальным для определенного материала и толщины. Завышенные его значения и, соответственно, повышенный расход плазмообразующего газа являются причиной ускоренного износа катода и сопла плазмотрона.

Самая сложная операция в процессе плазменной резки металла – пробивка отверстий. Это вызвано большой вероятностью образования двойной дуги и поломкой плазмотрона. Пробивка производится на увеличенном расстоянии между катодом и анодом – между соплом и поверхностью материала должно быть 20-25 мм. После сквозной пробивки плазмотрон опускается в рабочее положение.

Плазменная резка — вид плазменной обработки материалов, при котором в качестве режущего инструмента вместо резца используется струя плазмы .