Соединение конденсаторов

Соединение конденсаторов

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Подключение

Но тогда параметры элементов цепи, которые зависят от мощности и схемы соединения обмоток будет необходимо менять, что не очень удобно в эксплуатации. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. Подключение производится по этой схеме. Подключение трехфазного двигателя по схеме треугольник Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

Для возможности работы электродвигателя в однофазной сети вольт необходимо для начала его обмотки переключить на схему треугольник.

Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

Называют их конденсаторными.

Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности.
Подключение 3-фазного двигателя в сеть 220В через пусковой и рабочий конденсаторы

Читайте также  Как постирать тюль

Подключение электродвигателя через конденсатор: расчет и схема

Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.

Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

Коротенько про трехфазные асинхронные электродвигатели

Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).

Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и для электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

почему для пуска от однофазной сети используют именно конденсаторы

Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

как подключить электродвигатель через конденсатор

Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.

конденсаторы для запуска электродвигателя

Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:

Рабочая емкость = 2800*Iном.эд/Uсети

Рабочая емкость = 4800*Iном/Uсети

Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(

220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

Например, напряжение сети

220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.

Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Сохраните в закладки или поделитесь с друзьями

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Читайте также  Коптильня из стиральной машины

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Зачем нужен конденсатор для сабвуфера

Электрический конденсатор представляет собой двухполюсное устройство, способное накапливать, сохранять и отдавать электрический заряд. Конструктивно он состоит из двух пластин (обкладок), разделенных диэлектриком. Важнейшей характеристикой конденсатора является его емкость, отражающая величину энергии, которую он способен накопить. Единицей измерения емкости служит фарада. Из всех типов конденсаторов, наибольшей емкостью обладают электролитические конденсаторы, а также их дальнейшие усовершенствованные родственники – ионисторы.

Чтобы понять, для чего нужен конденсатор, разберемся, что происходит в электрической сети автомобиля при включении в нее низкочастотной автоакустики, имеющей мощность 1 кВт и более. Простой подсчет показывает, что ток, потребляемый такими устройствами, достигает 100 ампер и выше. Нагрузка имеет неравномерный характер, максимумы достигаются в моменты басовых ударов. Просадка напряжения в момент прохождения автозвуком пика громкости НЧ обусловлена двумя факторами:

  • Наличием внутреннего сопротивления аккумулятора, ограничивающим его способность к быстрой отдаче тока;
  • Влиянием сопротивления соединительных проводов, вызывающим падение напряжения.

Аккумулятор и конденсатор имеют функциональную схожесть. Оба устройства способны накапливать электрическую энергию, впоследствии отдавая ее нагрузке. Конденсатор это делает значительно быстрее и «охотнее» аккумулятора. Такое свойство и лежит в основе идеи его применения.

Конденсатор подсоединяется параллельно аккумулятору. При резком увеличении потребления тока увеличивается падение напряжения на внутреннем сопротивлении аккумулятора и, соответственно, уменьшается на выходных клеммах. В этот момент включается в работу конденсатор. Он отдаёт накопленную энергию, и тем самым компенсирует падение отдаваемой мощности.

Как подобрать конденсатор

Требуемая емкость конденсатора зависит от мощности сабвуфера. Чтобы не вдаваться в сложные вычисления, можно пользоваться простым эмпирическим правилом: на 1 кВт мощности необходима емкость 1 фарада. Превышение этого соотношения идет только на пользу. Поэтому, наиболее распространенный в продаже конденсатор большой емкости в 1 фараду, можно использовать и для сабвуферов мощностью менее 1 кВт. Рабочее напряжение конденсатора должно быть не менее 14 – 18 вольт. Некоторые модели оборудованы цифровым вольтметром – индикатором. Это создает дополнительные удобства в эксплуатации, а электроника, контролирующая заряд конденсатора, позволяет облегчить эту процедуру.

Схемы соединения конденсаторов — расчет емкости

В данной статье приведены различные схемы соединения конденсаторов, а так же формулы их расчета с примером.

Последовательное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы последовательное соединение конденсаторов будет выполняется следующим образом: второй вывод первого конденсатора соединяется с первым выводом второго конденсатора, второй вывод второго конденсатора, соединяется с первым выводом третьего и так далее. Таким образом мы получим группу (блок) последовательно соединенных конденсаторов с двумя свободными выводами — первым выводом первого конденсатора в блоке и вторым выводом последнего конденсатора, через которые данный конденсаторный блок и подключается в электрическую цепь.

Схема последовательного соединения конденсаторов будет иметь следующий вид:

Фактически последовательное соединение конденсаторов имеет следующий вид:

При данной схеме соединения заряды на конденсаторах будут одинаковы:

где: Q1, Q2, Q3 — соответственно заряд на первом, втором, третьем и т.д. конденсаторах

Напряжение на каждом конденсаторе при такой схеме зависит от его емкости:

  • U 1, U2, U3 — соответственно напряжение на первом, втором, третьем конденсаторах
  • C 1, C2, C3 — соответственно емкости первого, второго, третьего конденсаторов

При этом общее напряжение составит:

Рассчитать общую емкость конденсаторов при последовательном соединении можно по следующим формулам:

  • При последовательном соединении двух конденсаторов:
  • При последовательном соединении трех и более конденсаторов:

Параллельное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы параллельное соединение конденсаторов будет выполняется следующим образом: первые выводы всех конденсаторов соединяются в одну общую точку (условно — точка №1) вторые выводы всех конденсаторов соединяются в другую общую точку (условно — точка №2). В результате получается группа (блок) параллельно соединенных конденсаторов подключение которой к электрической цепи производится через условные точки №1 и №2.

Схема параллельного соединения конденсаторов будет иметь следующий вид:

Таким образом параллельное соединение конденсаторов будет иметь следующий вид:

При данной схеме напряжение на всех конденсаторах будет одинаково:

Заряд же на каждом из конденсаторов будет зависеть от его емкости:

При этом общий заряд цепи будет равен сумме зарядов всех параллельно подключенных конденсаторов:

Рассчитать общую емкость конденсаторов при параллельном соединении можно по следующей формуле:

Смешанное соединение конденсаторов

Схема в которой присутствует две и более группы (блока) конденсаторов с различными схемами соединения называется схемой смешанного соединения конденсаторов.

Приведем пример такой схемы:

Для расчетов такие схемы условно разделяются на группы одинаково соединенных конденсаторов, после чего расчеты ведутся для каждой группы по формулам приведенным выше.

Для наглядности приведем пример расчета общей емкости данной схемы.

Пример расчета

Условно разделив схему на группы получим следующее:

Как видно из схемы на первом этапе мы выделили 3 группы (блока) конденсаторов, при этом конденсаторы в первой и второй группе соединены последовательно, а конденсаторы в третьей группе — параллельно.

Произведем расчет каждой группы:

  • Группа 1 — последовательное соединение трех конденсаторов:
  • Группа 2 — последовательное соединение двух конденсаторов:

С4,5 = C 4* C 5/ C 4+ C 5 = 20*30/20+30 = 600/50 = 12 мкФ

  • Группа 3 — параллельное соединение трех конденсаторов:

В результате расчета схема упрощается:

Как видно в упрощенной схеме осталась еще одна группа из двух параллельно соединенных конденсаторов, произведем расчет ее емкости:

  • Группа 4 — параллельное соединение двух групп конденсаторов:

С1,2,3,4,5 = C 1,2,3+ C4,5 = 2,72+12 = 14,72 мкФ

В конечном итоге получаем простую схему из двух последовательно соединенных групп конденсаторов:

Теперь можно определить общую емкость схемы:

Собщ = C 1,2,3,4,5* C 6,7,8/ C 1,2,3,4,5+ C 6,7,8 = 14,72*60/14,72+60 = 883,2/74,72 = 11,8 мкФ

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Читайте также  Отмостка своими руками пошаговая инструкция

Почему применяется запуск двигателя 220 В через конденсатор?

Для начала определимся с терминологией. Конденсатор (лат. condensatio — «накопление») – это электронный компонент, хранящий электрический заряд и состоящий из двух близкорасположенных проводников (обычно пластин), разделенных диэлектрическим материалом. Пластины накапливают электрический заряд от источника питания. Одна из них накапливает положительный заряд, а другая – отрицательный.

Емкость – это количество электрического заряда, которое хранится в электролите при напряжении 1 Вольт. Емкость измеряется в единицах Фарад (Ф).

Метод подключения двигателя через конденсатор – этот способ применяют для достижения мягкого пуска агрегата. На статоре однофазного движка с короткозамкнутым ротором размещают дополнительно к основной электрообмотке ещё одну. Две обмотки соотнесены между собой на угол 90 0 . Одна из них является рабочей, её предназначение заставить работать мотор от сети 220 В, другая – вспомогательная, нужна для запуска.

Рассмотрим схемы подключения конденсаторов:

  • с выключателем,
  • напрямую, без выключателя;
  • параллельное включение двух электролитов.

Как подобрать

Электрический конденсатор — это специальный прибор с двумя полосами, который накапливает, сохраняет и передает заряд тока подключенным узлам. Его конструкция состоит из обкладок с диэлектрической изоляцией. Главным свойством изделия является емкость, указывающая на количество энергии, которая получается за единицу времени. Этот параметр отображается в фарадах (Ф).

Среди всего разнообразия конденсаторов максимальная емкость свойственна электролитическим моделям или более модернизированным типам — ионизаторам.

Чтобы упростить выбор конденсатора для усилителя в машине, нужно получить общее представление о том, что происходит в сети транспортного средства при запуске автомагнитолы, мощностью от 1 кВт, на низких частотах. При простых расчетах удается определить следующее — потребление тока достигает 100 А. Однако нагрузка становится неравномерной, и пиковые значения замечаются при басовых ударах. Скачки напряжения связаны с двумя явлениями:

Ты водитель автомобиля?! Тогда ты сможешь пройти этот простейший тест и узнать . Перейти к тесту »

  1. Внутреннее сопротивление батареи, которое ограничивает отдачу тока.
  2. Воздействие сопротивления от проводов, которые способствуют падению напряжения.

АКБ и конденсатор имеют некоторые сходства. Они предназначаются для накопления и отдачи электрической энергии, при этом второй узел справляется с этой задачей быстрее, чем аккумулятор. Это свойство определяет сферы его использования.

Подключение конденсатора выполняется параллельным образом. Если случается резкий скачок потребления тока, сопротивление внутри АКБ резко падает. В это время активируется конденсирующий элемент, который передает энергию, компенсируя падение мощности.

Выбирая деталь, необходимо учитывать мощность сабвуфера. Кроме сложных расчетов, можно применить простое правило: каждый 1 кВт мощности требует 1 Ф емкости. Если превысить показатель, это приведет только к положительным откликам. При этом рабочее напряжение должно варьироваться от 14-18 В. Отдельные конденсаторы оснащаются специальным индикатором, который упрощает их применение, а также электроникой для отслеживания заряда.

Конденсатор — это полезный аксессуар для автомобильного сабвуфера, который не только устраняет массу проблем со звуковым оборудованием, но и улучшает стабильность работы электрический цепи.

Это обусловлено принципом его действия и следующими особенностями:

  1. Приспособление выполняет роль фильтра скачков напряжения сети, которые появляются при коммутации нагрузок или взаимодействии электронных устройств. Его наличие положительно влияет на работу всех деталей.
  2. Конденсатор подавляет скачки при запуске или деактивации потребителей бортового напряжения, из-за чего генератор работает без сбоев.
  3. Когда запускается автомобильный стартер, конденсирующий узел обеспечивает ему дополнительную помощь, передавая заряд напряжения бортовой сети. Эта возможность будет особенно полезной в зимнюю пору, когда АКБ не может нормально передавать электрический ток.

Схема подключения электродвигателя без конденсаторов

Реально работающих схем подключения трехфазного двигателя в бытовую сеть 220 вольт без конденсаторов нет. Некоторые изобретатели предлагают подключать двигатели через индукционные катушки или сопротивления. Якобы, таким образом, создается сдвиг фаз на необходимый угол и двигатель вращается. Другие предлагают тиристорные схемы подключения. На практике это не работает, и не стоит изобретать велосипед. Когда есть дешевый и проверенный способ пуска посредством конденсаторов.

Действительно рабочим вариантом является подключение трехфазного асинхронного двигателя через преобразователь частоты. Преобразователь подключается в бытовую сеть и выдает трехфазный ток, причем с возможностью плавного пуска и регулировки оборотов. Но стоит такое чудо примерно от 7000 рублей с подключаемой мощностью всего в 250 ватт. Мощные приборы стоят гораздо дороже. За такие деньги можно приобрести электрооборудование с возможностью подключения к однофазной цепи. Будь то мини токарный станок, циркулярка, насос или компрессор.